8 [0 FURTHER APPLICATIONS OF INTEGRATION

8.1 Arc Length
Ly=2-3c = L=[',/T+(dy/dz)dz=[',/T+(-3)de =10 [1 - (-2)] = 3V10.

The arc length can be calculated using the distance formula, since the curve is a line segment, so

L = [distance from (—2,8) to (1, —1)] = /[1 = (=2)]2 + [(—=1) — 8] = v/90 = 3v/10

2 U th lell th formula lth = 4 - T —_— = — =, W€ get
w 2 = s
Smg € arc g y

1 d R ‘_2d —2lim/t—dm—
/ + ””‘/ ThVice ), e

=2 hm [sin~ x/2 f =2 hm [sin~ t/2)—sm_10]:2(§—0)=
t—

The curve is a quarter of a circle with radius 2, so the length of the arc is i(27r -2) = m, as above.

3 16 From the figure, the length of the curve is slightly larger than the
/ hypotenuse of the triangle formed by the points (1,0), (3, 0), and

(3, £(3)) =~ (3,15), where y = f(z) = 2 (2% — 1)3/2. This length
) is about v/15% + 22 ~ 15, so we might estimate the length to
-1 5 ‘ b615.5.y:§(z2—1)3/2 = y =(z%- )1/2(2:1:) =

1+ (YY) =1+42%(2* - 1) =4a* —42® +1 = (222 — 1), 50, using the fact that 2z% — 1 > 0 for 1 <z<3,

szl3 (222 — 1)2dz = f13 |22 — 1 dz = f13(2:c2 —1)de = [22° —m]f
=(18-3)~(2-1) =% =153

4 13 From the figure, the length of the curve is slightly larger than the

hypotenuse of the triangle formed by the points (0.5, £(0.5) ~ 1),
~1
}~ 3 (1,f(0.5) ~ 1) and (1, 2), where y = f(z) = 23/6 + 1/(2x).

This length is about 1/ (1) + (3)? ~ 0.6, s0 we might estimate

15

0.5 the length to be 0.65.
3 1 , @ g2
6T T V=T =
4 -4 4 -4 2 -2\ 2
, 1 =z T 1 =z T
1+ 2:1 _ = = _— = — — _— = — _—
W) =i+ s+ =T+ <2+ )

so, using the fact that the parenthetical expression is positive,

3 1
/2» /2 6 2x 1/2

(4 1)
_6_5_48 :ié—064583
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5.y=1+6z"2 = dy/de=92"? = 1+ (dy/dx)®=1+8lz. So
1
L=[;v1+8lzdz = 182 u1/2(§11- du) [where u = 1 + 81z and du = 81 dx]

82
:E%.g[uf*/?]l = 2 (8282 - 1)
6.y =4x+4)°%y>0 = y=2z+4)% = dy/dz = 3(z +4)'? =
1+ (dy/dz)* =1+ 9(x +4) = 9z + 37. So

2 _ 55
=/ V07 T 37dz [d“ 9“37’] :/ ul/2<1du>
0 U 3 9

=9dzx 7
:§-§[3/Z]3 = 2 (55/55 - 37/37)

5
T 1 dy 5 3
7= 4 ay D4 O -4
V=% T2 T do 6”” T

+ (dy/dm) =1+ 25338 ) + 100 B 25 z® +3 3+ 1?)0 e (%w‘l + 1%7"_4)2' So

2
r=| @ﬂ+%ﬂf@=/(@u%fﬂm=&f—%fﬁ
1 1

z?  Inz dy 1 d 1 1
g y="o-— = ZL=z—— ay 2
V=371 dz w 1+<dw) Tt T

4 2 4

1 T Inx 2In2 In2 In2

L= —\lde=|=—+—1| = _ 22 =

2<x+4z>m [2+4L <s+ 4) (z+4) 6+ 22
Q.z:%\/ﬂ(y—I} =%y3/2—y1/2 = d:zc/dy——yl/2 1y_l/2 =

2
1+ (dz/dy)® =1+ % i+ iyt =gyt Ly iyt = (%y1/2+%y‘1/2> . So
L= 9 (30 2 ) dy = 4[] = 33223 = (5 1+2.)
— _ 1(64) _ 32
=32-9)=3%)=%
10.y:ln(cosm) = dy/dz = —tanz = 1+(dy/da:)2—1+tan2:1:=sec2x So

f’r/?’\/sec2 dw—f"/aseczdm—[ln|secm+tana:|] =In(2++3) —-In(1+0) = In(2+v3).

t dy\’®
1. y = In(secz) = @:M:tamw = 1+ W) —14tan?z =sec’z,s0
dx secx dx

™ ™ w/4
L =f"/4\/sec2a:d:r=f0 /% |sec x| dx = “secxdw: [ln(secm+tanx)]0

(\/'+1) In(1+0) = 1n\/”+1)

2 / bl V3 / 2
12.y=lnz = -2 ,/1+ dy =4/1+ 1 VITT Sor= / VIHT ir Now

letv:\/1+m2,sov =1+ andvdv:mdm.Thus
2 2 9 1
L:/ —U——vdvz/ (1+ 1/ ———/2—>dv:[v+%ln|v—1|‘%ln|v+ll]ffz‘

s vi-1 V3 v—1 wv+1
2
1
oo b2 —2-2m3-vE+ i V2t :2—\/§+1n(\/§+1)—§1n3
2 Mo—1|| s 2 "\Vz-1

Or: Use Formula 23 in the table of integrals.
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13.y=coshe = ¢ =sinhz = 1+ (y)° =1+sinh®z = cosh®z
So L = [, coshzdz = [sinhz]} = sinh1 = 1(e - 1/e).

Uy =dz.z=1y = dwzzy = 1+( ) =1+1y% So

L=[fy1+32dy=[{ VITed 2du  [u=}y.dy=2du]
2 uvitw +hnfut VItaZ|])=v2+In(1+v2)

B.oy=e® = y=¢ = 1+(1) =1+€*. So
1 e
:/ \/1+e2md:1:=/ \/1+u2@ [u=e" sox =Inu,dr = du/ul
0 1 u

e / ) 14€2
:/ _1._’2__uudu:/ v vdv [v:\/1+u2,sov2:1+u2,vdv:udu}
1 u V2

v2 -1
_/VW"’ LL 2 1 Ll v—l Vite?
- NG v—1 v+1 2 NG
v - -1
1+e2+11 Vite -l 5o 1pY2-
Viter+1 2! B+l

:m_\/iﬂn( 1+e?— )—1—1n(\/§—1)

Or: Use Formula 23 for [ (v/1+ u2/u) du, or substitute u = tan 6.

x x T _ x
1G.y=ln<:m+i>:ln(ez-f-l)—ln(ew—l) = y = e+1_ee - = 2361 =
4e%* (ezm + 1)2 e +1 e +e® coshz
14+ )2 =1+ = 1 )2 = = = .
@) (e —1)%  (e2= —1)? W) e —1 e*—e* sinhz
h b : b _—b
SoL = / £os x = {lnsinhx] :]nsinhb—lnsinha:ln(s,mhb> :ln<e*e>.
sinh z a sinh a er —e—a

1.y =cosz = dy/dz=—sinz = 1+ (dy/dz)? =1 +sin’z.So L = fo27r V1 +sin? zdz.

By=2" = dy/dz=(2")In2 = L=[>/1+(n2)?2%de
Baz=y+y’ = dr/dy=1+3> = 1+ (dz/dy)? = 1+ (1 +3y?)? = 9y* + 6y + 2.
SoL = [!\/9" +6y% + 2dy.

2

b
20. — —+-— =1y==by/1- 22/a2 = i;\/az — 22 [assume a > 0].

b2
y= L/ 7 oo W b dy\* _ __ b2
a dz  g+/a? — 22 dz) — a2(a? - 2?)’

b2 1/2 4 o (b2—a2)x2+a4 1/2
R B Y sl s
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Ny=ze® = dy/dt=e—ze=e(1-xz) = 1+ (dy/dz)®=1+e2"(1-x)% Let
z) = /T+ (dy/dx)? = \/T+ e 22(1 — ). Then L = [} f(z)dz. Since n = 10, Az = 252 = 1 Now
L~ Sio = H2[£(0) +4f(3) +2(1) +4£(3) +2/(2) +47(3) +2/(3)
+4f(L) +2f(4) +4f(2) + f(5)] ~ 5.115840
The value of the integral produced by a calculator is 5.113568 (to six decimal places).

2
2z=y+.y = dr/dy=1+5—F7 = l+(da:/dy)2:1+<l+——~1 > :2+—1—+i.

Nz 28
Let g(y) = /1 + (dz/dy)?. Then L = [2 g(y)dy. Since n = 10, Ay = 251 = ;. Now
L~ Sio = 2g(1) + 49(1.1) + 29(1.2) + 49(1.3) + 2g(1.4) + 49(1.5)
+ 2g(1.6) + 4g(1.7) + 2g(1.8) +4g(1.9) + g(2)] ~ 1.732215,
which is the same value of the integral produced by a calculator to six decimal places.

. y=secx = dy/dr=secxtanz = L= f’r/g (z) dx, where f(z) = V1 + sec? z tan® z.

Since n = 10, Az = ”/?1’0_0 = Now

Lzslo_“/30[f(0)+4f( >+2f<%%>+4f< )+2f< >+4f<%>
+2f<%>+4f<%>+2f< >+4f( >+f( )]z1.569619.

The value of the integral produced by a calculator is 1.569259 (to six decimal places).

M8 y=zlnz = dy/dz=1+Inz Letf(z)= \/ﬁ(dy/alac)2 =1+ (1 +Inz)
Then L = f1 z) dz. Since n = 10, Az = 351 = ¢. Now
L~ Sio = 22[f(1) + 4£(1.2) + 2f(1.4) + 4f(1.6) + 2f (1.8) + 41 (2)
+2f(2.2) +4f(2.4) +2f(2.6) + 4f(2.8) + f(3)] =~ 3.869618.
The value of the integral produced by a calculator is 3.869617 (to six decimal places).

25. (a) 3
S

(b) 3 _ Let f(z) = y = = ¥/4 — x. The polygon with one side is just

the line segment joining the points (0, f(0)) = (0,0) and
(4, f(4)) = (4,0), and its length is 4. The polygon with two

sides joins the points (0,0), (2, f(2)) = (2,2 ¥/2) and (4,0).
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Its length is

\/(2—0)2+(2\‘7§—0)2+\/(4—2)2+(0—2\3/5)2:2\/4+23/3%6.43

Similarly, the inscribed polygon with four sides joins the points (0,0), (1, ¥/3), (2,2¥/2), (3,3), and (4,0), so
its length is

e () (0= 08 1 (3-208) s VT

12 — 4z
(c) Using the arc length formula w1th dy =z [%(4 —z)72/3(— 1)} V4 — z = —————, the length of the

3(4 )2/3’
2
curve is L = / 1+ dy dz—/ \/l—f— 12 - 495/3] dx.
V —)

(d) According to a CAS, the length of the curve is L ~ 7.7988. The actual value is larger than any of the

approximations in part (b). This is always true, since any approximating straight line between two points on the
curve is shorter than the length of the curve between the two points.

26. (a) Let f(z) =y =z +sinz with0 < z < 2n. 27
(

0 v 2
(b) The polygon with one side is just the line segment joining the points (0, f(0)) = (0, 0) and
(27, f(2m)) = (27, 27), and its length is /(27 — 0) + (27 — 0)2 =227 ~8.9.

The polygon with two sides joins the points (0, 0), (7r, f(m)) = (m,7), and (27, 27). Its length is
\/(7r—0)2+(7r—0 24/ —m)2+ +@2r-7m)2=V2r+vV2r=2v27~ 89

Note from the diagram that the two approximations are the same because the sides of the 2-sided polygon are in
fact on the same line, since f(7) = 7 = 3 f(2m).

27

f

0 . . 2

3

The four-sided polygon joins the points (0,0), (3,2 + 1), (m, ), (3, 37" —1), and (2, 27), so its length is

VO G0 @+ 07 @7 (-0 + 57+ G o P o

o
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(c) Using the arc length formula with dy/dx = 1 + cos z, the length of the curve is

L= [T+ +cosz)?dz= [ "2+ 2cosz + cos? z d

(d) The CAS approximates the integral as 9.5076. The actual length is larger than the approximations in part (b).

2
dx —2y dz '\ 4y (1+9?)
2]. z=In(1— 2 = — = = ]_+(—) =1+ = . So
oo dy 1-y dy (1-9®)" (1-9?)°
1/2
L:/
0

28 y=2c"% = dy/cl:t:‘—éacl/3 = 1-}—(dy/d:1:)2:1-|-—19§132/3 =

(1+47)”
1-12)?

1/2 2
_ / 1ty dy =In3 — % [froma CAS] =~ 0.599
o 1-9°

L=f1 \/—1+—1—6z2;dw=f4/3 VI F w282 dy [ u= %xl/s, du= %z —2/3 .

0 i 0 64 dwz%mz/f‘du:% Téu2du—6}1u2du
2 81M1y(14202) V1T — tln(u+ vITa?)])
—ai0+2) /3 -in(i+/F)]=8G ¢33
=205 _ Bl In3~ 14277586

2 23 =1-2*% = y:(l—m2/3)3/2 = Y

1/2
gg = %(1—w2/3)1/2(—%x—1/3) :—1;_1/3(1—:82/3) / = /
T

dy 2 0 1 x
ht-d — -2/3 _ p2/3) — -2/3 _ 1. Th

(da)) T (1 T ) T us

L=4

1
— _ 1 .-1/3 _ ; 3..2/3| —
V14 @2 -1dz=4,= /dz—4tl_lf(§l+ [2.7: ]t 6.

30. (a) y

Ol x
_ 1 _
byy=2 = 1+ (%) =1+ (22 “1/3) — 144220 SoL= [} \[1+ 3223 da
1 9
[animproperintegral].ac:ya/2 = 1+(d) ~1+(3 1/2) —1+%y.SoL———fO \/1+Zydy<

3/2 _ 13/13-8 :
The second integral equals 5 5" %[(1 + 4y) / ] = % (133 . 1) = —3%— The first integral can be

evaluated as follows:

! \/9$2/3+ \/u+ u = 9z2/3,
1+ 3 4,-2/83dr = lim 73 dz = lim du — 62-1/3 dz
t—0t+ Jy T 3z/8 t—0+ Jo32/3 =
\/'u,—l— 3/2 i 133/2 _ 43/2) = 1313 — 8
/ 18 ( 47 =gl ) 27
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(¢) L = length of the arc of this curve from (—1,1) to (8,4)

_ 9 137214
= Jo 1+ Jydy+ [y 1+ Jydy = 232 1 2 [(14 39)%%]" ffrom part ()]
/5 1354 80y/T5 -
_ 13 21$ 8+%(10\/ﬁ_1)_13 13 g() 10—16

7
N.y=20" = o =322 = 1+ (y)® =1+92. Thearclength function with starting point Py(1, 2) is
T
s(2) = [T VITOtde = [Z(1+902] = 2[(1+92)/2 ~ 10 Vi)

1
16z4’

+ © 9

2
2 (@) ¢ (b)1+<ﬂ> =zt ]

dx

s@)=J7 [ +1/(4t%)) at
=[1¢ - 1/(4t)]7

=4a~1/t4) - (3 -} : :

= %zg -1/(4z) — 55 forz >1

33. The prey hits the ground wheny =0 < 180 — 4—15272 =0 & 2°=45.180 = z= V8100 = 90, since

z mustbe positive. ' = -2z = 14 ()’ =1+ 7522°, 50 the distance traveled by the prey is

L=f090,/1+ﬁﬁd:v:fo‘l\/l-#u?(%du) [u=4—25:1:, du=4—25dz']
L %[%u\/l—l-uz-i-%ln(u-ﬂ/l-}—u?)];
=22VIT+ In(4+ VI7)] =45V17+ £ In(4+V17) ~ 209.1 m

B.y=150—- 5(z-50)2 = o = —55@—50) = 1+(@) =1+ 507 (T — 50)2, so the distance traveled
by the kite is

L=[5"\/14 g (@ =502 de = [*/2, VT o2 (0du) [u= 35 (z — 50), du = & dz]
220[%u\/1+u2+%ln(u+m)]3/2

—5/2

§+ln(g+\/¥)+g\/§9—m(—g+\/¥)]

[é
2
=18V13+ 239 + 101n(§t+45\}§_9) ~ 1228 ft

Il

10

35. The sine wave has amplitude 1 and period 14, since it goes through two periods in a distance of 28 in., so its
equation is y = 1sin(22z) = sin(% ). The width w of the flat metal sheet needed to make the panel is the arc
length of the sine curve from z = 0 to z = 28. We set up the integral to evaluate w using the arc length formula

with % — Fcos(Zz): L = f028 V1+[2 cos(%x)]2 dr = 2f014 V1+[2 cos(%x)]z’dx. This integral would

be very difficult to evaluate exactly, so we use a CAS, and find that L ~ 29.36 inches.
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36. () y =c+acosh(2) = ¢ =sinh(2) = 1+ (y)°=1+sinh?(£) = cosh?(Z). So
L= ffb,/cosh2(§) dz = 2f0b cosh(%) dz =2 [asinh(f)]g = 2asinh(2)

(b) Atz =0,y = c+ a, so c + a = 20. The poles are 50 ft apart, so 100
b=25and L =51 = 51 = 2asinh(b/a) [from part (a)].

y = 2xsinh(25/x)

From the figure, we see that y = 51 intersects y = 2z sinh(25/z) at

T ~ 72.3843 for z > 0. So a ~ 72.3843 and the wire should be o
attached at a distance of
y = c+ acosh(25/a) = 20 — a + acosh(25/a) ~ 24.36 ft above |
0 /100

the ground.
Py=[FVE—Tdt = L=v@-1 byFICI] = 1+(2)°=1+(Va®-1)"=2" =
4
L=f14\/m3d:v:f14m3/2dm:%[z‘r’/z] =2(32-1)=%2 =124
1

38. By symmetry, the length of the curve in each quadrant is the same, L1

-
so we’ll find the length in the first quadrant and multiply by 4. f \N )

2k +y2k -1 = y2k =1-22 = y= (1 _ 3Ezk)l/(%)

(in the first quadrant), so we use the arc length formula with

dy 1 1/(2k)—1 _
& =g =) (2

— _p2k-1 (1 _ m2k)1/(2k)—1

The total length is therefore

1 2 1
Lok = 4/ \/; [—mz"—l (1- ka)l/(zk)_l] dr = 4/ \/;:19(2’“‘1) (1= av"”‘)l/k"2 dx
0 0

Now from the graph, we see that as k increases, the “corners” of these fat circles get closer to the points (£1,+1)

and (%1, F1), and the “edges” of the fat circles approach the lines joining these four points. It seems plausible that
as k — 00, the total length of the fat circle with n = 2k will approach the length of the perimeter of the square with

sides of length 2. This is supported by taking the limit as k — oo of the equation of the fat circle in the first

quadrant: lim (1 — mzk)l/(%) = 1for0 < z < 1. So we guess that lim Lok =4-2=28.
k—o0 k—o0

DISCOVERY PROJECT Arc Length Contest

For advice on how to run the contest and a list of student entries, see the article “Arc Length Contest” by Larry

Riddle in The College Mathematics Journal, Volume 29, No. 4, September 1998, pages 314-320.
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8.2 Area of a Surface of Revolution

Ly=lnz = ds=,/1+(dy/de)?dz=\/T+1/z)2dz = S=[2r(Inz)\/1+ (1/z)2de [by (7)]

2. y=sin’z = ds=+/1+(dy/dz)?dz = V1+ (2sinzcosz)2dz =
S = f0"/2 2rsin® z1/1+ (2sinz cosz)2dz  [by (7)]

3 y=secx = ds= /14 (dy/dr)?dc =/1+ (secztanz)?dz =
S = ﬂ/427r:c\/1+(secm’cana: dz [by (8)]

by=e" = ds=,/1+(dy/dz)?dr=+1+e*dz = S= f1"227rm\/1+623d$ [by (8)] or

Jiam(ny) (/14 (1/y)*dy by ©))
5.y=2" = y =322 So
S= f02 2y \/1+ (v')*dz = 2n f02 2*V1+9z%de  [u=1+92% du = 362° dx)
=% [ Vadu = 3 [2u 3/2]1 = 2 (145 /145 — 1)

6. The curve 9z = y? + 18 is symmetric about the x-axis, so we only use its top half, given by

y=3vVz—2. dy/dz = 2\/% so 1+ (dy/dz)® =1+ Thus,

9
4z —2)

6 6 6
_ 3vVe =3 1+ —2 o [o— 2+ 9 g — 1y1/2
S—/z 2 -3V -2 1-+-4(w_2)dx—67r/2 x 2+4d:1:—67r/z (m+4) dx

=om [+ )] = am[(3)77 - (3)7] = an(12 — 2) — 452 = s

Ly=vz = 1+ (dy/dz)*=1+[1/(2yZ)]" =1+ 1/(4z). So

9 dy\ 2 9 1 9
Sz/ 2my g [1+ [ =2 d$=/27r\/5 1+—dx=27r/ z+ Ldr
4 dz 4 4z 4 4

=2r[2(x+1 )3/2}4_—[5(4:“1)3/2] (37\f_—17\/‘)
8 y=cos2z = dszmdm:mdm =

S:f"/ 27 cos 2z v/ 1 + 4sin? 2xdm-27rf0 1+u2( du) [u =2sin2z, du = 4 cos 2z dz]

Zzg[ u\/l+u2+lln(u+\/1+u2)] [f 2+11n(f+2)]:%5+31n(2+\/§)
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9. y=coshz = 1+ (dy/dz)?> =1+ sinh®z = cosh?z. So

S=2m fol coshz coshz dz = 27 fol 1(1+ cosh2z)dz = 7|z + } sinh 2x](1)

:7r(1+—é-sinh2) or [1+ (e —e 2)]

Mao=1"+2)"" = du/d

<
Il
(SIS
—
<
N
+
Y
~

S=or [Py(y® +1)dy=2n[dy* + 3y} =2r(4+2- ;- 3) = 3F
122=1+2 = 1+ (dz/dy)® =1+ (dy)*>=1+16y".So
2
S=on [Py /T 1602 dy = & [ (164> +1)"" 32ydy-—”[§(16y +1)"'/2]1
=5"Z(65\/6—5—17\/ﬁ)
By=Yz = z=y° = 1+ (dz/dy)®* = 1+ 9y*. So
S =2 [2a/TF (dofdy)? dy = 2n [} v/ 1+ 0yt dy = 55 [T /1 +0y736y° dy
~ a2+ - 2 (145 V145 - 1010 )
Wy=1-2> = 1+ (dy/ds)’=1+42" =
S:27rfolxmdw:§f018wm¢'c——[ (422 +1)‘”] =z(5v5-1)

15. 2 = /a2 —y2 = dz/dy= %(az - y2)71/2(42y) = —y/\/a* - y?
2 22 2 2
y  _a’-—y v __a
1+(d$/dy)2:1+a2_y2*a2,y2+a2_y2 aZ —y2 =

a/2 a ..
2 a e/2 _ 9 2 _0) = wa?. Note that this is
= 2m\/a? — 2———dy:27r/ ady—27ra[ ] = wa( .
/0 " v Va? —y? 0 2



16.

17.

18.

19.

20.
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;11 the surface area of a sphere of radius a, and the length of the interval y = 0toy = a/2 is i the length of the

interval y = —atoy = a.

z =acosh(y/a) = 1+ (dz/dy)® =1+ sinh?*(y/a) = cosh?(y/a). So

S= QW‘/_Zacosh(%) cosh( ) dy = 47ra/0a coshz(%) dy = 27ra/0a [1 +cosh(%’)} dy

2( 2
@ ma“(e“+4—e
:27m[y+-gsinh<@>J :27ra[a+gsinh2] :21ra2[1+%sinh2] or ( 3 )
@ /1o

y=lhz = dy/de=1/z = 14 (dy/dz)®=1+1/2> = S= f1327rlna: V1+1/z2dz.
Let f(z) =Inz /1 +1/22 Since n = 10, Az = 3= = 1 Then
S S0 =2m - U3 [F(1) +4f(1.2) + 2f(1.4) + - -- + 2f(2.6) + 4£(2.8) + f(3)] ~ 9.023754.

The value of the integral produced by a calculator is 9.024262 (to six decimal places).

y=z+vz = dy/de=1+1z""? = 1+ (dy/dz)? =242+ 171 o

S = /27r a:+\/_)1/2+71_—+—dm Let f(z) = (z + vz ), /2 \/1_+4i

_2-1_ 1
Since n = 10, Az = %5 = ig- Then

S~ Si0 =21 20 [£(1) +4f(1.1) + 2f(1.2) + - - - + 2£(1.8) + 4£(1.9) + (2)] ~ 29.506566.

The value of the integral produced by a calculator is 29.506568 (to six decimal places).

y=secx = dy/dr=seczxtanz = 1+ (dy/dc)®=1+sec®ztan’s =

S = foﬂ/s 2msecz V1 +sec? ztan? rdz. Let f(z) = secz v/1 + sec? z tan? z.

T/3-0 _m
10 30

S~ Sio = 2 - /30[ (0)+4f(3—7;> +2f<§—g> +..~+2f<§—g> +4f<g—g> +f(g)J ~ 13.527296.

The value of the integral produced by a calculator is 13.516987 (to six decimal places).

Since n = 10, Az = Then

— z\1/2 112 _ 1 z\-1/2  _x __ e’
y=(1+¢€%) = da:_2(1+e) e T 2(1+en)i/z =
14+ (dy) —14 e _4+4e” +e* (" +2)?

dx 4(1 +e®) 4(1+e”)  4(1+eo)

1 x 2 1
S:/2w\/1+e$%dw:w/ (ez+2)da:=7r[ez+2z];:7r[(e+2)~(1+0)]:7r(e+1).
0 0

Let f(z) = 3(e® 4+ 2). Since n = 10, Az = 152 = . Then

S~ S0 =21 - X2 [£(0) + 4£(0.1) + 2£(0.2) + - - - + 2f(0.8) + 4£(0.9) + f(1)] ~ 11.681330.

The value of the integral produced by a calculator is 11.681327 (to six decimal places).
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Ny=1/z = ds=+/1+(dy/dr)2dz=1/1+ (-1/22)de = \/1+ 1/z*dz =
/2% ¥ 4 /2
S= / \/1+—dz—2 21 g = 2n / %—l(édu) [u=2°, du = 2z dz]

fVI+? dugﬂ[_\/l—}—lﬂ
u? - Uu

+ln(u+ 1+u2)]4
1

o[ T (4T + £ (o4 E)] - o[V (52

/ 2 I 2
2 y= ?2+1 = Z—Z:\/E;ﬁ = ds= 1+(%) dr = 1+ﬁidm

3 1‘2 3 3 ) 2

S:/Qﬂvm2+1 1+a:2 1d$:2”7/ V2$2+1d-’17:2\/§7r/ x2+(ﬁ) dz
0 0

0 3
2=l2\/§7r[lm\/:c2+%+iln(z+\/x2+%>]0
=2v2r[3\/9+ L+im(3+/0+3 )—%ln%]:2\/§7r[%,/%)+%ln(3+\/1—29)+%ln\/§]

= 2v/2r[34E + 1 In(3v2+ VI9)| =3VI0r + 5 n(3v2+ VI9)

4

ol

By=2and0<y<1l = y =3"and0<z<1

S:fol 27TCE\/1+(3$2)2d$=2ﬂ'f03\/1+’u2%du [u:3$2’du: 6xd$]

3
f:\/1+u2du§—l [or use CAS] %[%um—l—%ln(u%—mno
=§[§\/ﬁ+§1n(3+\/ﬁ)] =%[3\/1_0+1n(3+\/16)]

2
dy 2 _ 1
24.y:ln(w+1),0§w§1.ds=ﬂ1+(3;) dcc—”1+($+1 dz, so
! 1 ? 1
S:/ 2nx 1+———2dw——-/ 2m(u — 1) 1+—5du [u=z+1,du=dx]
0 (z+1) 1 u

2 e 2 A3 2 2 Txrw?
:271'/ u—ﬂdu—%r/ —1utu—du——-27r/ \/14—?1,2du—21r/1 ——u——du
1 u 1 1

Il

wl

2
2 14+ v1+u?
%2 [or use CAS] 27 |u 1+ + 3 n(u+ 1+u2)};27r[\/1+u2—1n(—-—5——)]

1

—on[VB+im(2+VE) - 3v2- 1im(1++v2)] —or[V5 - In(155) - VZ+in(1++2)]
:21r[% ln(2+\/—5_> +ln(1—i24§) +3§ - %ln(l-{-\/é)]
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oo 2 [=] o0 /pd 1
25. S =2rm y4/14+ &y dz = 27r/ l\/1 + L dr = 27r/ __st dz. Rather than trying to
1 dx 1T x4 1 T

evaluate this integral, note that v/z% + 1 > Vx4 = 22 for z > 0. Thus, if the area is finite,

/4 oo .2 oo
S =2r / yvr *v2 d3:>27r/ %dw:%r/ ld:lc
1 1

T

But we know that this integral diverges, so the area S is infinite.

2. S = [[°2ry+/1+ (dy/dz)?dz = 27 e —e %)2dr [y=e %y =—e"7]
Evaluate I = [e™®/1 + (—e~%)2 dz by using the substitution u = —e~%, du = e~ dz.
I=[Vituwdu? uVi+u?+ iin(u+vitu?)+C
=3(-e)WVite T +in(-e+Vite =) +C
Returning to the surface area integral, we have
_ . t g —
S = 27Ttllf§°f0 e "1+ (—e*)2dx
=2 hm [3(—e ™) VI+e 2=+ 3In(—e™® + m)];
=2 lim {[3(=e™)VI+e P+ fIn(—e "+ VIFe )] - [L(-1) yITI+ sIn(-1+vI+1)]}
=2m{[3OVI+ 30+ V)] - [-3v2+1in(-1+v2)]}
= 2n{{0] + 3 [V - In(vZ~ 1)]} = n[VE ~ In(vE~1)]

2]. Since a > 0, the curve 3ay?* = z(a — z)? only has points with y

£20.(3ay* >0 = z(a-2)2>0 = z>0)The

curve is symmetric about the x-axis (since the equation is

 ~
N — ©

unchanged when y is replaced by —y). y=0whenz = 0Qora,

so the curve’s loop extends from z = 0 to z = q.
d d 2 dy
o (3ay):E[x(a—x)] = 6ay£::v-2(a—ar:)(~1)—i-(a~z)2 =

dy _(a—z)[-2z+a— 2] dy\? —)%(a — 3z)? a—z)*(a — 3z)?
b _ 20 o () oo oo

36a?y? 36a? ) z(a —x)?

[the last fraction] _ (a — 3x)?
is 1/y2 T 12az




682 O CHAPTER8 FURTHER APPLICATIONS OF INTEGRATION

dy a® —6ax + 92> 12ax  a® —6azx +92> o’ +6azx+92°  (a+32)°
1+ =1 — _ _
(dm) + 12ax 12ax + 12ax 12az 190z for z # 0.

“\/E(a—z).a+3mdm:27r/“ (a,—x)(a—i-?mc)d:c

(a)S:/ 2y ds = 2w
z=0 v 0 V3a Vv12azx 6a

I 2 _ T2 2 3@a_ T ,3 3 3y,
_ﬁ/o(a +2am—3m)dw—£[aa¢+az —x]o——3—a(a +a —a)_é_aj.a =5

Note that we have rotated the top half of the loop about the x-axis. This generates the full surface.
(b) We must rotate the full loop about the y-axis, so we get double the area obtained by rotating the top half of
the loop:

at3z 4, _4n z'*(a + 3z) dz

S:2~27r/ rds = 4r T T =
z=0 o VI12azx 2v3a

o [2 /2 §m5/2] 27r\/_<3 5/2+§a5/2>
0

’ 2 432%%)dz = = |Za +
0(“ =) V3a |3 5 3./a 5

Il

2m
V3a
V3 (2 6\ , 2mv3[(28) , 56mrv3ad’

3%5)% ~ )% T 45

3 3 45

28. In general, if the parabola y = ax?, —c < z < ¢, is rotated about the y-axis, the surface area it generates is

c 2ac —
2 dop = X/ 21y u = 2az,
27r/0 z+/1+ (2az)?dr =27 . 1+u 52 | gu — 2adz

- 2ac
= 47;2 (1 + ’Ll,2) / 2udu = — [% (1 u2)3/21\

0 +
= |1 a0 1]

Here 2¢ = 10 ftand ac® = 2ft,soc =5anda = 2—25 Thus, the surface area is

__ 6257 (413141 . 1)

yy 3/2
S= §g4_ [(1 +4- 625 25)3/2 ] =9r [(1 + 38 - 1] =21 125

- ~ 2

=55 (41 vaL - 125) ~ 90.01 ft

22 92 y(dy/dz) = @_ b’z
29'52_+§:1 = T T & T dn | a%y
dy 2 biz®  bz? +a'y biz® + a4b2(1 - 12/612) B a*b? + biz? — a?b’z?
1+ (E) =1+ ady? = ady? = a2 (1 — 2%/a?) = G2b2 — a2b’g2

_a 44 252 — 222 a4f(a2—b2)m2
at — a2x? T a2(a? - x?)
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The ellipsoid’s surface area is twice the area generated by rotating the first quadrant portion of the ellipse about the

x-axis. Thus,

o (dy)? /“b 5 V(@ — B)a?
— - :4 - 2—12 dx
S 2/0 27y 1+(d:c> dz 7r0 Jvai-—u i

ay/a2—b2
47rb/ )2 do :@ a4—u2L [u= a2 - b2z

a® J, a? — b2

a® . _
~Vat—u2+ —sin” —

30 4mb [u 1 U]a @t
b

- a2— 2 2 2 a2 0
2 1 Va? —b?
bsin
4rd ava? =0 ——e— a' | Va2 -2 2 a
T @ a2—b2[ 2 a'—a*a —b)+?sm a il L a? — b2

30. The upper half of the torus is generated by rotating the curve (z — R)? + 32 = r2, y > 0, about the y-axis.

dy B dy (z-R)? y*+(@=-R)?> r?
yd:r: =—@-R) = 1+<dw) =1+ y? N y? _rz—(w—R)lehus’
R+r d R+r
522/ 2mx 4|1+ < ) dr =4n
R—r dz R—r (:E*

" u+R

=4mr _r\/ﬂ———u'é’du [u=2z— R]

T udu

=4nr ———— +4nRr ’ du

V= S~
—drr-0+8rRr [ ince the first i i i
=A4nr 7 Rr ; _\/ﬁ [since the first integrand is odd and the second is even|]
=8nRr [sin_l(u/r)]; = 8nRr(3) = 4n’Rr

31. The analogue of f(z}) in the derivation of (4)is now ¢ — f(z7). so

S:nli_{r;oiQN[c— M1+ [f(z2)] Az—/ 27le — f( 1+ [f(z)]*d

Roy=2"2 = ¢ = =1iz712 o 1+(y')2:1+1/4x, so by Exercise 31,

S = f04 2n(4 — vz ) \/1+1/(4z) dz. Using a CAS. we get

S =2mIn(V17+4) + Z (31117 + 1) ~ 80.6095.
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33. For the upper semicircle, f(z) = vr2 — 22, f'(z) = —z/+/r2 — z2. The surface area generated is

I 2 T
= _ 2 _ 2 z _ T
S1 / QTF(T T a:) 1+T2_x2dw—47r/0 (r— rz—mQ)—r2 dz

-T

T 2
=4r LA,
0 72 — 12

. . )
For the lower semicircle, f(z) = —v/r2 — z2 and f'(z) = —236—2 $0 So = 47r/ (__r + r) dz.
e —x 0 r2

— 2

. T 1"2 2 1/ T 2
.- - 2
Thus, the total areais S = Sy + Sz = 87r/0 <—_-__r2 $2> dr =8 [r sin (;)}0 =8rr (%) =4r 2.

34. Take the sphere z% + v 422 = idQ and let the intersecting y
planesbey:candy:c+h,where—%d§c§%d—h. y:T—h//—_\
The sphere intersects the zy-plane in the circle h \ /\ x
249y = 142, From this equation, we get x d_m +y=0 y ]= ¢

ad ’ ay V=0 —
dx Y . .
so — = —<. The desired surface area is
dy T

S=2r [zds=2m f5+hm 1+ (dz/dy)?dy = 27 f:'+h:v V1+y?/z?dy =27 f:‘+h Va2 +y?dy

=2 fcc-l'h tddy =nd fcc+h dy = ndh

35. In the derivation of (4), we computed a typical contribution to the surface area to be 2 3_;%4-_.% | P;—1 P, the

area of a frustum of a cone. When f(z) is not necessarily positive, the approximations y; = f(z:) =~ f(zi) and
yiot = f(mi1) ~ f(x¥) must be replaced by y: = |f(x:)| = |f(z])| and yimr = [ f(zi-1)[ & |f(z7)]. Thus,

2 gz—_12-|-_?ﬁ [P Py = 2w | f(zf)| /1 + [f'(z})]> Az. Continuing with the rest of the derivation as before, we
obtain S = [* 2| f(z)|/1+ [f'(2)] dz.
36. Since g(z) = f(x) + ¢, we have g'(z) = f'(z). Thus,
Sy = [ 2mg(@) 1+l @) de = [ 2n(f (@) + ]/ 1+ [f (=) do

:f: 2 f(z)4/1+ [f(x)) da +27rcf: 1+ [f'(2))? dz = Sy + 2mcL
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DISCOVERY PROJECT Rotating on a Slant

tangent to C

at (x;, f(x,) flx;) — (mx, + b)|

In the figure, the segment a lying above the interval [z; — Az, ;] along the tangent to C has length

Azseca = Az v1+tan?a = 4/1+ [f'(z:)]® Az. The segment from (z;, f(x;)) drawn perpendicular to the

line y = mx + b has length

9(z:) = [f(zi) — mz; — b]cos B = fle) ~mai—b _ flw) - mei—b_ fe:) —mai—b

sec 3 Vi+tan? V1t m?
Au
Also, cos(B — a) = F———

Au= Az seca cos( — a) = Az cos 3 cos ?()—::mﬂ me Az(cos B+ sin 3 tan a)

o m ] 14 mf(z)
Az [\/l—l—mQ i1l (zl)} Vit m?

Az

Thus,

. n . n ;) — - b 1 + mf’(l'l)
Area(R) = lim 9(zi) Au = lim f(zi) —mz _ A

1

= m/p [f (@) —=mz —b] [1 + mf'(z)] dz
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2. From Problem 1 withm =1, f(z) =z +sinz, mz +b=z —2,p =0, and ¢ = 27,

Area =

1+12f [z+sing — (z - 2)] [1 + 1(1 + cosz)]dz = 3 02"(sin:c+2)(2+cosm)dm
1 02"(25in:1:-l—sin:ccos:v+4~1—2cos:1:)da::%[—2cos:z+%sin2a:+4cc~|—251n:1:](2)7T

=1[(~24+0+87+0) — (~2+0+0+0)] = 1(87) =4

" B f(:z:i)—mm,-,—b21+ f'(zi
3V—11 g 7 lg(z:)]* Au = hmlz:lw[ Niwai ] \/lﬁl—i——rfzz)Ax

_ (1_+77;2—)m-/p [f(@) - mz — b [1 + mf' (z)] da

27

™

4.V:————/ z+sinz —z+2)°(1+1+cosz)dzr
(1-+-12)3’/2 0 ( A )

27
s . 2
— sinz + 2 osr +2)d
2\/5/0 ( ’ )(C ) ‘

||
s!

f " (sin’ z + 4sinz + 4) (cosz + 2) dz
s o

(sm T cosx +4sinx cosx + 4 cosz + 2sin? m+8s1nx+8) dz

sl

|4

[% sin®z + 2sin’z + 4sinz + z — %sin?x - 8C0$:L‘+893]§ﬂ [since2sin2w =1 — cos2z]

|
S

m_[(2r — 8+ 16m) — (-8)] = 93 72

Sl

5. S———/q27rg(a:) +[f'(x))*d \/1__’__/ [f(z) — mz —b] 1+ [f(z))* dz

6. From Problem 5 with f(z) = /z,p=0,g=4,m = z.andb=0,

szﬁ—%/j(ﬁ—;@ 1+(2—1ﬁ)2dm

o [In(ViT+4)  37V17
VG 32 24

— %] [from CAS]

~ 8.554
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8.3 Applications to Physics and Engineering

O

687

1. The weight density of water is § = 62.5 Ib/ft®.
(a) P =6d ~ (62.51b/ft>) (3 ft) = 187.5 Ib/ft>
(b) F = PA ~ (187.5 Ib/ft*) (5 ft)(2 ft) = 1875 Ib. (A is the area of the bottom of the tank.)

(c) As in Example 1, the area of the ith strip is 2 (Az) and the pressure is 6d = éz;. Thus,

F = [} 6z-2dw ~ (625)(2) [y zde = 125[12%)% = 125(2) = 562.51b

2. (a) P = pgd = 1030(9.8)(2.5) = 25,235 ~ 2.52 x 10* Pa = 25.2 kPa
(b) F = PA~ (2.52 x 10* N/m?) (50 m?) = 1.26 x 10° N
© F = [2° pgz - 5dz = (1030)(9.8)(5) [*° zdz ~ 2.52 x 10 [2?]2° ~ 1.58 x 10°N

0

In Exercises 3-8, n is the number of subintervals of length Az and z* is a sample point in the ith subinterval [z;_1, z;].

3. Set up a vertical x-axis as shown, with z = 0 at the water’s surface and 70
increasing in the downward direction. Then the area of the ith rectangular oft T2
+x
strip is 6 Az and the pressure on the strip is 6z} (where § ~ 62.5 1b/ft3). 4 ft w;=6
Thus, the hydrostatic force on the strip is 6z} - 6 Az and the total 16
n X
hydrostatic force ~ Y éz; - 6 Az. The total force
i=1
s LA _ 6 _ 6
F—nlirilgléxi 6Az = [, 6z -6dx = 66 [, zdzx
=66[127]; = 65(18 — 2) = 966 ~ 6000 Ib
4. Set up a vertical x-axis as shown. Then the area of the 4th rectangular strip ( 0
_ 4ft
is ‘5"(4 — z7) Az. [By similar triangles, Wi _ é so T!
4—zr 3 Wi 4 x*
3ft !
w; = §(4 — x}).] The pressure on the strip is 8z;, so the hydrostatic force
14
on the strip is 6z; - 4 (4 — ;) Az and the total force on the x

plate 37 6z} - §(4 — z}) Az. The total force

i=1
F=lim ¥ 6z} 4(4—z]) Az = f14 b2 3(4—z)dr = %5]3(4:1: —z?)dz
n—oo /{2

= 58[22% — 2°]] = 46[(32 - &) — (2 1)] = 46(9) = 126 ~ 750 Ib
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5. Since an equation for the shape is z% + y® = 10 (z > 0), we have

y = /100 — z2. Thus, the area of the ith strip is 2 /100 — (z})? Az
and the pressure on the strip is pgz;, so the hydrostatic force on the

strip is pgx; - 24/100 — (z})? Az and the total force on the

plate & 5" pgz; - 21/100 — (z})2 Az. The total force
i=1

n 10
F= lim Y pgx; -2\/100——(:1:;‘)2Aac:/ 2pgx /100 — 22 dz

10

2
=—pg folo (100 — m2)1/ (—2z)dz = —pg[%(lOO - x2)3/2]0 = —2pg(0 — 1000)
= 2000 g ~ 2090 1000 - 9.8~ 6.5 x 10° N [p ~ 1000 kg/m’ and g ~ 9.8 m/s” ]

6. By similar triangles, w; /4 = z} /5. s0 w; = 4z and the area of the

1th strip is %xf Az. The pressure on the strip is pgz}, so the hydrostatic ‘l'
force on the strip is pgx; - %m}‘ Az and the total force on the 5m
n
plate ~ 3 pgz; - sz; Az. The total force l
i=1 4m
R x « 5 5
F = lim 3 pgot - $oi Aw =[] pga- fode = §pol5alo = 30 5 = 50
~ 1901000 9.8 ~ 3.3 x 10° N.
4 ft wid ft wide .
7. Using similar triangles, wide _ a2 W a = 3z} and the 12

Sfthigh  z fehigh -

0
a1 f A

width of the ith rectangular strip is 12 + 2a = 12 + z;. The area of the 2+xF
strip is (12 + z}) Az. The pressure on the strip is ;. a:i
n s Sx 4 20
F=lim Y éz;(12+2}) Az = [§ bz - (12+z)dz
n/0 =1
8 2 2 138_5384 512
=5f0(12a:+m)d:c=6[6z +—3_]0— (384 + 532)
= (62.5)16% ~ 3.47 x 10" Ib
8. In the figure, deleting a b x h rectangle leaves a triangle with base a — b 0 a
a — b) ft wide d ft wide xf V J

‘ il wiangles, & _ : X :
and height h. By similar triangles, . ft high = h—e) i high’ a - a—b)
so the width of the triangle is h

*

d:ﬁ%m—z(a—b):(1—%)(a-b):a—b~%(a—b)

and the width of the trapezoid isb+d = a — % (a — b). The area of the ith rectangular strip is
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[a — % (a— b)] Az and the pressure on it is pgz}.

n * h
z; T
F=1 ; ——1a—bJAa::/ pgz |a — — (a —b)| dz
i 3ot a5 (@) de = [poz[o- T o)

h h 2 3
pg(b—a) 2, h b—ah
:pga/0 xdm+————h /0 T dz—pga—2 + pg Y

_ 2fa b—a\ _ 2a+2b~@h2 25) N
= pgh (§+ 3 )»pgh—6 ~ —5-gh’(a +2b)

9. From the figure, the area of the ith rectangular strip is 2 /72 — (z*)*Az

and the pressure on it is pg(z; + 7).

n
F=lim Y pg(ai +7)2/r2 — (z7)* Az

y
=[" pglz+r)-2vr? —22da
=pg [” Vr?—z22zdx + 2pgr [T V2 —22d
The first integral is 0 because the integrand is an odd function. The second NP
X
integral can be interpreted as the area of a semicircular disk with radius T,
or we could make the trigonometric substitution z =  sin 6. Continuing:
F =pg-0+ 2pgr- %wrz = pgrrd = 1000g7r3 N (SI units assumed).
, . = y
10. The area of the 4th rectangular strip is 2 v/ 2y} Ay and the pressure y=12
onitis éd; = 6(8 — y;).
1.2
=8 V/ — 8 1/2 y=xx
F=[y868-y2v2ydy=42-2- \/§fo (8- y)y'/*dy gasoline y=8 ’
level
8 8
=84V2 ! (Sy”2 - y3/2) dy = 84+/2 [8 L2302 %yS/ZJO oy
=84\/§[8-§~16\/_—§-128\/§} -
*
=84v2-256 V2(} — 1) = 43,008 2 = 57344 1b g
0 x
11. By similar triangles, 8 =% = w; = 2a; . The area of the ith *
43 z V3 43 8 m
N -
rectangular strip is f{? Az and the pressure on it is pg(4/3 - z}). .
Xi
4v3 4v3 4v3
2z 2
F:/ pg(4vV3—1) 2L gp =8 / dz — %9 24 0
| ( ) 7 0g | zdz A z°dz
vi 2 2
= 4pg[:c2]3 8 _ZP9 [wa]g\@ = 192pg — =P9 64-3v3

3v3 3v3
= 192pg — 128pg = 64pg ~ 64(840)(9.8) ~ 5.27 x 10° N




690 T CHAPTER8 FURTHER APPLICATIONS OF INTEGRATION

12. F :f02 pg(10 — )24 — z? dx x

2m
= 20pg f02 V4 —z2dz — pgf02 V4 — z22zdz
2m
= 2Opg%7r(22) — pg f; u?du [u=4-2% du=—2zdzx]
0

= 20mpg — %pg[ 3/2] = 20mpg — % pg = pg(20m — 37)
= (1000)(9.8)(20m — 28) ~ 5.63 x 10° N
13. (a) The top of the cube has depthd = 1 m —20 cm = 80 cm = 0.8 m.
F = pgdA ~ (1000)(9.8)(0.8)(0.2)> = 313.6 ~ 314N

(b) The area of a strip is 0.2 Az and the pressure on it is pgz; .
F =[5, pgz(0.2)dx = O.2pg[%x2](1)'8 = (0.2pg)(0.18) = 0.036pg = 0.036(1000)(9.8)

=352.8 < 353N

14, The height of the dam is h = v/707 = 257 cos30° = 15v/T9 (2.

From the solution for Exercise 8, the width of the trapezoid is

100 — %(100 —50) =100 — E’% From the small triangle in the

second figure, cos 30° = é} = z=Azxsec30° =2 Am/\/g.

h
F=/ 6z<100 52.’1:) 2 dx = 2006/ 1006 :1:2 dz
0 0

2006 A2 1006 h® _ 2006h? _ 200(62.5) 12825
V32 hv33 33 3v3 4

~7.71 x 10% 1b

40 ft

15. (a) The area of a strip is 20 Az and the pressure on itis 6x;.

3 1 3 9 20 ft 9 ft
F :/ 6220 dx = 205[—1-2] =206 = =906
0 2 0 2 3 ft

— 90(62.5) = 5625 1b ~ 5.63 x 10° Ib

(b) F = [ 6220de = 206[12%]% = 206 - & = 8108 = 810(62.5) = 50.6251b ~ 5.06 x 10* Ib.
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(c) For the first 3 ft, the length of the side is constant at 40 ft. For 3 < z < 9, we can use similar triangles to find the

a 9—-z _ 99—z
lengtha.4—0: 6 = a=40- 5

Il

406[%9:2](3) + %6 f; (9:1; - mQ)dm

F= f03 6z40dz + f: 62(40)%2 dz
=1806 + 2632 — 12°]] = 1806 + 26[(722 — 243) — (& — 9)]

= 1806 + 6008 = 7806 = 780(62.5) = 48,750 Ib ~ 4.88 x 10 Ib

(d) For any right triangle with hypotenuse on the bottom, 0 _%
Az 3
cscl = ——— = 40
hypotenuse 7
V402 +62 /409 4
hypotenuse = Az cscf = Az 6+ =3 Az. * 6
. Ax
_ )l
F= [ 6220 Y42 dz = 1(20v/409 )6[12*] . Axesc = (47 ) Ax

=1-10v4096(81 — 9)

~ 303,356 1b &~ 3.03 x 10° Ib

16. Partition the interval [a, b] by points z; as usual and choose x; € [zi—1, ;] for each 5. The ith horizontal strip of
the immersed plate is approximated by a rectangle of height Az; and width w(z7), soits area is A; ~ w(z]) Az;.
For small Az;, the pressure P; on the ith strip is almost constant and P; = pgz; by Equation 1. The hydrostatic
force F; acting on the ith strip is F; = P,A; = pgz} w(z}) Az;. Adding these forces and taking the limit as
n — 00, we obtain the hydrostatic force on the immersed plate:

n n

F=1lim 3 Fi= lim ¥ pgz;w(z})Az; = f: pgzw(z) dx

n—oo /7] n—oo ;7]

1. F = [} pgz - w(z) dz, where w(z) is the width of the plate at depth z. Since n = 6, Az = 522 =1 and
F~ Sg :pg.lsﬁ[z-w(2)+4~2.5-w(2.5)+2-3-w(3) +4-3.5-w(3.5)
+2-4-w4)+4-45-w(45) +5- w(5)
%pg(2~0+10-0.8+6-1.7+14~2.4+8~2.9+18-3.3+5~3.6)
= 5(1000)(9.8)(152.4) ~ 2.5 x 10° N

‘ 1 /b b b
18. (a) From Equation 8, T = 2/ zw(z)dz = Ai:/ zw(z)dr = pgAE:pg/ zw(z)dr =

(pgT)A = fab pg zw(z) dz = F by Exercise 16.

(b) The centroid of a circle is its center. In this case, the center is at a depth of r meters, so T = r. Thus,
F = (pgz)A = (pgr)(nr?) = pgmr®.

2
19. The moment M of the system about the originis M = 3 muz; = mizy + maozs = 40 - 2 +30-5 = 230.
i=1
2
The mass m of the system is m = Z mi = mi1 + mz = 40 + 30 = 70. The center of mass of the system is

i=1
_ 230 _ 23
M/m = 20 = =
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20.

2l.m

24,

. Since the region in the figure is symmetric about the y-axis, we know

M = miz1 +moxs + m3xr3 = 25(—2) + 20(3) -+ 10(7) = 80;

8|

= M/(mi+mz+ms) = % = i—?.

3
Zj 6+5-+10 = 21. MmﬁZmyz—6() 5(—2) + 10(—1) = 10;
=1 =1
3
_ M, 1 MI 1
Z 6(1) +5(3)+10(-2)=1.7=— = —andy = = —0 so the center of mass of the
= m 21 m 21

system is (55, 32).

4 4
. M, = Z:lmjyi =6(—2)+54)+1(-7)+4(-1) = -3, My = S muz; = 6(1) +5(3) + 1(—3) +4(6) = 42,
i= i=1
4 _ M 42 21 M. 3
andm = L:Zlm, =16,50T = —t = o= andy = —= = —16,thecemerofmas31s @9 = (3 -%).

that T = 0. The region is “bottom-heavy.” so we know thaty < 2,

and we might guess that y = 1.5.

2
0

A= 24 -a*)de =2 [} (4- o) do = 2[4z — §2°]

2
T = % / z(4 — mz) dx = 0 since f(x) = z(4 — wz) is an odd
2

function (or since the region is symmetric about the y-axis).

1 3 ]. 2 2 4 3 83 152
_ _ 2 . _ dr = — |16z — = hl
Y /2 ~(4 ac) dx 2/0 (16 — 8z +z%)dz D) T 3:1: +5w .

=3 +%)=301-5+3)=3(5) =

Il

wiloo

Thus, the centroid is (Z,7) = (0, §)-

The region in the figure is “left-heavy” and “bottom-heavy,” so we know
Z < 1and g < 1.5, and we might guess that T = 0.7andy = 1.2.
3r+2y=6 < 2y=6-3z = y=3—%m.

A:fOZ(B—%m)dm:[3m~%m2]§:6—3:3.

F= L [Po(3- ) de=} [} (30— 37) o
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y

25. The region in the figure is “right-heavy” and “bottom-heavy,” so we know

T > 0.5and y < 1, and we might guess thatZ = 0.6 and g = 0.9.

A= [lefde =[] =e—1,

=1 [lze*dz = —L-[ze® —€®]; [by parts]
= 2500~ (1) =+
- _ e 17,2z _
=% 05( )? dz = 15 - Z[e ] _4(e1—1)(e -1) = e %

Thas, the centroid is (£,7) = (17, <51 ) ~ (0.58,0.93).

26. The region in the figure is “left-heavy” and “bottom-heavy,” so we know Y

Z < 1.5andy < 0.5, and we might guess thatZ = 1.4 and § = 0.4.

2 _
A= [ %d:cz[lnx]f:1n2,m=%f12w-idz:%[x]?z%:ﬁ, 1T

T=303(3) do =35 [fa7de = 5 [-1];

=ma(-2+1) =1 0
Thus, the centroid is (Z,7) = (lnza 4ln2) ~ (1.44,0.36).
TS ST Y . .v
=4 Jy oV —2)de = 6 [} (z¥? — 2?) de .
:6[%335/2_%;,;3]0:6(%_%): (L) =2, 1
T =y (2]
V= 4 01%[(\/5)2 —x2] dw:ﬁ'%fol($—$2)dm 0 4 | ,?)—%’ E)x

=sle’ - 4o} =34 - 1) = 1

I

Thus, the centroid is (Z,7) = (2,

28.A=f_21(x+2—m2)da:—[2$ +2z -1z 3]2_1

— (a2l =2
= Af_ x(x+2—x2)da:——f21 (z2+2z—m3)dw

= 84"+ - o],

Il
Ol
—
—_~
wloo
+
o~
I
=~
S—
I
—_~
|
Wl
+
[

[
N,
N—
L
Il
©oo
o
I
=
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29 A= fo”/4(cosm sinz) dz = [sinz + cosz|}’* = V2 - 1, Y

=~ (0.27,0.60)
y=sinx

— —1 rm/4 .
zZ=A 0/ z(cosz — sinz) dzx

= A7 '[z(sinz + cos x) + cos T — sin 1]3/4 [integration by parts]
y=cosx

1
1o/5 1 ; :
:A—l(g\/i_l):zi_’r_‘/—_ 0 A >
V2-1 4
f"/4 1(cos’ z —sin’ z) dz = 75 0"/4 cos2zdr = J5[sin2z]5/* = & = 4(\/%*1)

V2 -4 1
4(\/5_1),4(\/5*1)) ~ (0.27,0.60).

Thus, the centroid is (Z,y) = (

30. A= f acda:+f2 Lde = [%xz](l)-{—[lna:]f =1+In2,

L [folmzdm+f121dm] =1 ([— ] + [z]] )

* A
1+1 :_.2_. é—__g_’
3 1+2In2 3 3(1+2In2)

11 1\_ 5 5
T 24\3 "7 2) 124 6+12In2’

8 5
3(1+2In2)’ 6(1+ 2In2)

is stated after Example 3: the moment of the union of two nonoverlapping regions is the sum of the moments of the

Thus, the centroid is (Z,7) = ( ) ~ (1.12,0.35). The principle used in this problem

individual regions.

31. From the figure we see that y = 0. Now
5
A= [P2VE—mdo=2[-3(5~ x)3/2]0
3
=2(0+35%%) = 35

SO

=1 Pa[VE-z— (-v5—=x)]dz = L [P2z6—zdx
=%4f\0/52(5~u2)u(—2u)du [U=v5~—$,$=5—u2,u2:5—m,d$:~2ud'u.]

s
— 4 [By2(5-u?)du= 4[5 - 3] = g5 (BVE-5VE) =5-3=2

Thus, the centroid is (Z,7) = (2,0).
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32. By symmetry, My =0andZ =0; A= 1r-1* +4,som = pA =5(% +4) = 3(r+8);

1
M.=p- 2f [(V1—22)? dm-5f0( 3)dx:—5[%z3+3m]0:—5-%):—%;
2 20 e —20 >
77— L1 =50 — = Thus, the centroid is T, :(0,_ .
V=mMe =5y 3(r + 8) @9) 3(m + 8)
33. By symmetry, My =0andZT =0. A=1bh=1.2.2=2 y
1 2 11 2 2 y=2-2x
Me=p [  52-2z)de=2p [} 1(2 - 22)*dz p=1
1) Ly
:4]10 w(—du) [u=1-z du=—dz]
-1 0 1 x
0
=—4[3’]; = —4(=3) = 3
V=M. = 5 M; = 115 - § = 2. Thus, the centroid is (z,7) = (0, 2).
12

34. By symmetry about the line y = x, we expect that T = gy A= imﬂ. som = pA =2A = ;nr’.
M, =pf5 3(Vr? = :v2)2dz =25 [/ (r*—2*)dz = [rPz — §m3]g = 2,3
3

2 ,,.2
My=p [ zvr?—22dzr = Jo(r? = m2)1/22md.r = [ u?du [u=r?—2?] = [§u3/2]0 =273

T= ‘I‘My = —2‘(§7"3) =5 Y= L, = i(21"3) = 357 Thus, the centroid is (Z,7) = (=, 7).

m wr2 8w m mr2 23
? z 2 “ fEB 2
35. A= 2° — = | = _ =
, (e [ln? 3}0
4 8 1 3 8 —(2.4)
(m 3)—m—m—3~1661418

H(X,y) = (0.781,1.330)

2.5

[use parts]

Alln2  (In2)? (In2)?

1{ 8 3 1
= -[“ - 4] ~ 2(1.297453) ~ 0.781

_ 1/21 z\2 2 1 1221 .’11'52

y=—=1 3/@) - (2% — — . T
4 Jo i@ A/ #)de= g 2[21n2 5JO
1

=1 1716 32 1 16
A 2\2In2 " 5 " 2mn2 A 41n2 5 2(2210106)"’1330
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Since the position of a centroid is independent of density when the density is constant, we will assume for convenience that p = 1in
Exercises 36 and 37.

3

36. The curvesy = z + Inz and y = =° — z intersect at

(a,c) ~ (0.447141, —0.357742) and
(b,d) ~ (1.507397,1.917782).

A:fb(a:—klnm*a:a—{—w)dm:f:(Qa:—l—lnm—ms)dm

Y 2? 4 zlne -z — t2%]’ ~0.709781 05

(X,y) = (0.986, 0.539)

Il

%fbm(2w+lnx—z3)d :Af (2w —|—wlnm—x)dr

D123 4 12?2 (2Inz - 1) - § 125]° ~ £(0.699489) ~ 0.985501

T

7 = % f: %[(m+ Inz)® — (z° — x)2] dz = 55 fab [2zInz + (Inz)? — 25 + 22*] dz
101 and

P L (2% lnz — 12® + 2 (Inz)® — 2zlnz + 20 — 72’ + 255)" ~ 24 (0.765092) ~ 0.538964

Thus, the centroid is (Z,y) ~ (0.986,0.539).

37. Choose z- and y-axes so that the base (one side of the triangle) lies along Y
the z-axis with the other vertex along the positive y-axis as shown. From B|0.5)
L L2 o cy+bx=bc
geometry, we know the medians intersect at a point 3 of the way from ay+bx=ab
each vertex (along the median) to the opposite side. The median from B
A c .
goes to the midpoint (3 (a + ¢),0) of side AC, so the point of @0 0 o0

intersection of the medians is (2 - (a +¢), 3b) = (3(a +¢), 3b).
This can also be verified by finding the equations of two medians, and solving them simultaneously to find their

point of intersection. Now let us compute the location of the centroid of the triangle. The area is A = %(c —a)b.

z %[ffw%(a—w)dw+f5w‘%(c—w)dw]=%[%ff(aw—wz)dﬂ%fé(cw—wg)dw]
— b [laz? - 170 + E[kea? - 307]; = A[-30° 4 30') + &3 - 5]
_ a3 3 2y _
= a(cz—a) ’ __g_+ C(c?—a) i 3((—a)(c —a ) - kg_g

5= 310 32— 2) dat [§ 3~ )” do]

= %[b—z 12 (a® - 2az + 2?) dx + '21% Jo (¢ — 2cz + %) di]



38.

39.

40.
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cre a+c
Thus, the centroid is (Z,7) = (—3—-—7

Remarks: Actually the computation of y is all that is needed. By considering each side of the triangle in turn to be

b .
= ], as claimed.
3> as claime

the base, we see that the centroid is % of the way from each side to the opposite vertex and must therefore be the

intersection of the medians.

The computation of ¥ in this problem (and many others) can be simplified (0 b
by using horizontal rather than vertical approximating rectangles. If the
length of a thin rectangle at coordinate y is £(y), then its area is £(y) Ay,

its mass is p£(y) Ay, and its moment about the z-axis is

!
I

o]
_L)'
yj[: f'——“f(y)—-{
J—

AM, = pyl(y) Ay. Thus, f——c

M, = /pyf(y) dy and § = W =% [ yly) dy

In this problem, ¢(y) = c_;g (b — y) by similar triangles, so
2 [ 2 21,2 1 376 b
= / y(b-y)dy = /O(by*y)dyzb—z[gby —gy]0=b—2-E:§
Notice that only one integral is needed when this method is used.

Divide the lamina into three rectangles with masses 2, 2 and 6, with centroids (=3,1).(0,3) and (2, 3),

respectively. The total mass of the lamina is 10. So, using Formulas 5, 6, and 7, we have

T= % = % i ¢ = 15[2(—~3) +2(0) + 6(2)] = £(9), and
V= = X mas = [20) +2() +6(3)] = $02)

Thus, the centroid is (Z,7) = (2, §).

Divide the lamina into two triangles and one rectangle with respective masses of 2, 2 and 4, so that the total mass
is 8. Using the result of Exercise 37, the triangles have centroids (=1,3) and (1,2). The

centroid of the rectangle (its center) is (O ——) So, using Formulas 5 and 7, we have

M

_ 138
y=- E; vi=3[2(2) +2(2) +4(-3)] = 2(2) = &, and T = 0, since the lamina is symmetric

about the line z = 0. Thus, the centroid is (z, 7) = (0,7%).

12
A sphere can be generated by rotating a semicircle about its diameter. By Example 4, the center of mass travels a

distance 27y = 27r(§—;) = %, so by the Theorem of Pappus, the volume of the sphere is

7'l"I"2

—Ag =TT 8 _ 43
V =Ad = 2 3—37r7'.
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41. A cone of height h and radius r can be generated by rotating a right Y

triangle about one of its legs as shown. By Exercise 37, = %r, so by the

Theorem of Pappus, the volume of the cone is h
V = Ad = (1 - base - height) - (20%) = Lrh - 2n(3r) = 37r’h. Q—_?
0 r x
42. From the symmetry in the figure, 7 = 4. So the distance traveled by the Y
centroid when rotating the triangle about the z-axis is d = 2w - 4 = 8.
The area of the triangle is A = 2bh = 3(2)(3) = 3. By the Theorem of
Pappus, the volume of the resulting solid is Ad = 3(8m) = 24
0 x

43. Suppose the region lies between two curves y = f(z) and y = g(z) where f (z) > g(z), as illustrated in Figure 13.
Choose points z; witha = zo < 1 < -+ < T = b and choose z} to be the midpoint of the sth subinterval; that

is,z; =T = %(.’Ei—l + ;). Then the centroid of the ith approximating rectangle R; isiits
center C; = (Zi, 3[f(T:) + 9(%i)]). Iis areais [f(Z:) — g(:)] Az, so its mass is
plf @) — 9(&:)]) Az. Thus, My(R:) = plf (@) — 9(@)] Az - Ti = pZ: [f(Z:) — 9(z:)] Az and

M, (R:) = p[f(Ti) — g(Z:)] Az - Hf@)+g9@))=p- %[f(il)2 — g(Ei)z] Az. Summing over ¢ and taking

the limit as n — oo, we get My = nlln;o S, 0% [f (&) — 9(Ti)] Az = pf;7 z[f(z) — g(z)] dz and

M, = lim ¥, p-3[f(@)* - 9(@:)°] Az = p [0 L[f(z)* - g(z)?] da. Thus.
M, gl M. 1
ac:-ﬁ pA A/ —g(z)]dz and y_m_pA—Aa

44. (a) Let0 < z < 1.Ifn < m, then 2™ > x™; that is, raising « to a larger

power produces a smaller number.

(b) Using Formulas 9 and the fact that the area of R is
1 1 m-—-n

1
_ n_ ™Y dp = - = , we get
A_/O(x @) da n+l1 m+1 (n+1)(m+1) &

=_(n+ H(m+1) [! R . (n+1)(m+1) /1 (a™ — ™) d

_(n+1)(m+1){ 11 }:(n-kl)(m—i—l)
- n+2 m+2 (n+2)(m +2)

m-—"n
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and

y= p+1)(m+1) /01 1 [(ac")2 - (2:'")2] i = (0T Dm+1) /Ol(azzn —2°™) dz

m-n 2 2(m —n)
M<n+1)<m+1>{ L1 }: (n+1)(m +1)
T 2(m-—n) 2n+1 2m+1] (2n+1)(2m+1)

(c) If we take n = 3 and m = 4, then
o _(454:5\ (220
@D ={5%73)" 36

which lies outside % since (2)” = £ < 20, This is the simplest of many

possibilities.

8.4 Applications to Economics and Biology

1. By the Net Change Theorem, C(2000) — C(0) = f02000 C'(z)dz =

C(2000) = 20,000 + [5**°(5 — 0.008z + 0.0000092°) dz = 20,000 + [5z — 0.0042> + 0.000003z°]2°
= 20,000 + 10,000 — 0.004(4,000.000) + 0.000003(8,000,000,000) = 30,000 — 16.000 + 24.000
= $38,000

2. By the Net Change Theorem, R(5000) — R(1000) = 1%%%0 R'(z)dz =

R(5000) = 12,400 + [767 (12 — 0.0004z) dz = 12.400 + [122 — 0.000227] To00
= 12,400 + (60,000 — 5.000) — (12,000 — 200) = $55,600

3. If the production level is raised from 1200 units to 1600 units, then the increase in cost is

C(1600) — C(1200) = [, C"(z) dz = (74 4+ 1.1z — 0.0022% + 0.00004z%) da

1600

— 2 0.002,.3 4
= [74z + 0.552% — ©092,3 4 00001z ) 1200

=64.,331,733.33 — 20,464,800 = $43,866.933.33

4. Consumer surplus = f030 [p(z) — p(30)] dz P

consumer

_ 30
surplus

=Jo [5- 52— (5- )] da

= [32— £2%)% =90 — 45 = 45 2
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450

5 p(z)=10 = —— =10 = = Py
p(z) pogrer > z+8=45 = z=3T. 2
87 450
Consumer surplus = [p(z) — 10]dz = / <_ —10 }dz E consumer
0 0 z+8

=[4501n (z + 8) — 10z]Y

= (4501n 45 — 370) — 4501n8

=4501n(%2) — 370 ~ $407.25

6. ps(z) =3+0.01z>. P=ps(10) =3 +1=4

Producer surplus = folo[P —ps(z)] dz
producer
_ rio 2 _ . 10 surplus
= [;°[4-3-001z°] dz = [z — &2’ )

~ 10— 3.33 = $6.67

0 2 4 6 8 10 x

1. P=ps(z) = 400=200+02z%2 = 200=02z"% = 1000= 2 = z=1000%3 = 100.

Producer surplus = 100 [P — ps(z)]dz = 100 [400 (2()() + 0,2;,;3/2)] dz = 100 (2()0 1 3/2> dz

[20095 o/ 2] = 20,000 — 8,000 = $12,000
0
8. p=50— m andp =20+ 55 m intersect at p = 40 and = = 200. p consumer
surplus
Consumer surplus = 02 (50 — &z — 40) dz 5(;
4
=100 — L ]200 — $1000 30 &P
207 supply producer
200 10 surplus
Producer surplus = [ (40 — 20 — j5z) dz L
200 o] so 150 250 x
= [20z — &2°]; = $2000

800,000 ~=/5000

= =16 = =1 = 3727.04. 40

P(®) = = 720000 ren

: consumer surplus

Consumer surplus = [ [p(z) — 16] dz ~ $37,753 . X
{ (= 3727
0 4000
10. The demand function is linear with slope == 0 S = —% and p(400) = 7.5, so an equation is

p—75=—%(z—400)orp = — 7T + 11845 A selling price of $6 implies that 6 = —7gz + 47 =
%$=1—f4—5—§—i:% = x = 505.

505
Consumer surplus = [o°° (=57 + 47 — 6) dx = [ 5a® + Yyz], ~8$1821.61
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M. f(8) - f(4) = [P f(t)dt = [* Vidt = [ ts/ﬂ = 2(16 v/2 — 8) ~ $9.75 million

1060 .8t

9
] = [2200¢]2 + & [eO-St]‘;
5

9
12. n(9) — n(5) = / (2200 + 10e*%) dt = {2200t+
5

=2200(9 — 5) + 12.5(e"? — e*) ~ 24,860

4 4
13.F= mPR._ m(4000)(0.008) ~1.19 x 107* cm®/s
8nl 8(0.027)(2)

4
i (, then "E0R0 _ TPRY PyR4=PR* = £=<@).
14. If the flux remains constant, the Sl = 8l 0ltg j2)

4
R= %Ro = Ii:— = <31}; > = P= P0(§)4 ~ 3.1605Fy > 3F,; that is, the blood pressure is more
0 2o

than tripled.

15 [ elt) de = 3% ke(12 - )t = (30 - 30%)ab = [34° - I 2 1614 = P2 o1
A 8 mg 60

= L s = L/min.
JZe(t)ydt  T2mg s/L /

Thus, the cardiac output is F' =

16. As in Example 2, we will estimate the cardiac output using Simpson’s Rule with At = 2.

Jo? e(t)dt ~ 2[1(0) + 4(2.4) + 2(5.1) + 4(7.8) + 2(7.6)
+4(5.4) +2(3.9) + 4(2.3) + 2(1.6) + 4(0.7) + 1(0)]
=2(110.8) ~ 73.87mg - s/L

A

8 .
Therefore, F ~ 387~ e 0.1083 L/s or 6.498 L/min.

8.5 Probability

1. (a) [, 400000000 f(z) dz is the probability that a randomly chosen tire will have a lifetime between 30,000 and
40,000 miles.

(b) f2°5(.>000 f(z) dz is the probability that a randomly chosen tire will have a lifetime of at least 25,000 miles.

2. (a) The probability that you drive to school in less than 15 minutes is f f(t)dt.

(b) The probability that it takes you more than half an hour to get to school is fso f(t)dt

3. (a) In general, we must satisfy the two conditions that are mentioned before Example 1—namely, (1) f (z) > 0 for
allz, and (2) [ f(z)dz = 1. For0 < z < 4, we have f(z) = 2216 — 22 > 0, so f(z) > 0 for all z.
4
Also, [ f(z)dz = [} 2216 — 22 do = - [tae - m2)1/2(—2w) dr = -3 [%(16 - m2)3/2J
0

4
=-&[(6- 2?)?| = -&o-64)=1.
Therefore, f is a probability density function.
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b)) P(X <2) = [°_f(x)de = [} Zz V16— 22 dz = — &5 [ (16 — 2*)"/*(~2z) da
(206 2] ) =~ [as - 227 = ka2 - 1677
= 4 (64-12V12) = & (64 —243) =1 - 2V/3~ 0.350481

4, (a) For 0 < z < 1, we have f(z) = kxz(l — z), which is nonnegative if and only if k£ > 0. Also,
5, fx)de = fol kz*(1 —z)dz = lcfol(m2 —z*)dz = k[32® — 4] =k/12.Now k/12=1 <
k = 12. Therefore, f is a probability density function if and only if k = 12.
(b) Let k = 12.
P(X > 1) = [, f(a)de = [}, 12¢°(1 - z) d = [1,,(122% — 122%) dz = [4a® — 3z%]]

—(4-3)-(3-%)=1"%=1

1/2
1
2
(c) The mean

uw= ffooo zf(z)dx = f01 z-122%(1 — z) dz = 12 fol(x3 — m4) dz = 12[%:1:4 — lxs]l

5 0
—n(-3)=%=1

5. (a) In general, we must satisfy the two conditions that are mentioned before Example 1—namely, (1) f (z) > 0 for
allz,and (2) [%_ f(z)dz = 1. Since f(w) = 0 or f(z) = 0.1, condition (1) is satisfied. For condition (2), we

see that [ f(z)dz = 10 0.1dz = [12]'° = 1. Thus, f(z) is a probability density function for the
oo 10

spinner’s values.
(b) Since all the numbers between 0 and 10 are equally likely to be selected, we expect the mean to be halfway

between the endpoints of the interval; that is, z = 5.

p= [ xf(z)de = 2(0.1)dz = [552° ](1)0 = 100 — 5, as expected.

6. (a) As in the preceding exercise (1) f(z) > 0 and

@ %, f(@)dz = ® f(z)dz = 1(10)(0.2) [area of a triangle] = 1. So f(z) is a probability density
function.
() () P(X <3)= fo x—-(3)(01) ——-015
(i1) We first compute P(X > 8) and then subtract that value and our answer in (i) from 1 (the total probability).
P(X >8)= (w)dw— 2(2)(01)— 2 ~0.10.S0P(3< X <8 =1-015— 0.10 = 0.75.
(c) We find equations of the lines from (0, 0) to (6, 0.2) and from (6, 0.2) to (10, 0), and find that
36T if 0<z<6
flz) = —5133-’;-% if 6<z<10
0 otherwise

10
b [ af(@)de = [0 a(de) do+ [0 (e + }) do = [l + e’ + el
_és (a0 20y (-2 4+ 30) =1 =53

x
= lim [7 ée_t/sdt:% = IILII;O [—é(f5)e’t/5}m:% =

T— 00

7. We need to find m so that [ f(t)dt =

1
2
(-1)(0—e ™) =35 = et =1 = —m/s=Ini = m=-5lng=>5In2~3.47min.



SECTION85 PROBABILTY O 703

ift<0

0
8 (a) p=1000 = f(t)= { 1__—t/1000

—_——e if ¢ 2 0

1000 200
=—e % 1120181

(i) P(0 < X < 200) = 0200 1_010_06—15/1000 dt — [_evt/IOOO]

0
T

o - : - — —4/5
(i) P(X > 800) = [ sge™/ % dt = lim [-et/19%°)" =04 ¢~4/5 ~ 0.449

r—00

800

(b) We need to find m so that [° f(t)dt = 3 = lim [ d-e /1000 gt = i =

zoo0vm 1
x

lim [—e /10" =1 = 040 =1 5 _m/l000=Inl =

&T— 00 m

m = —10001n 3 = 10001n2 ~ 693.1 h.
9. We use an exponential density function with y = 2.5 min.

(@ P(X >4) = [* f(t)dt = lim [F 5le™/>%dt = lim [—e—t”f’L =0+e %25 ~0.202

T—00

2
® P0< X <2) = [? f(t)dt = [ne*t/“]o = —e%/25 1 1~ 0551

(c) We need to find a value a so that P(X > a) = 0.02, or, equivalently, PO0<X<a)=098 <
Je )t =098 < [—e—t/“]“ =098 & —e 25 41=008 o e 925-002 o
0

-a/2.5=1n002 & a=-25In 5—10 =2.5In50 ~ 9.78 min & 10 min. The ad should say that if you
aren’t served within 10 minutes, you get a free hamburger.

73 2
1 (z — 69) .
1 = = < = —_ ~ U. 7
10. (a) With 4 = 69 and o = 2.8, we have P(65 < X <73) /65 YN exp( 7 5.8 ) dz = 0.847 (using

a calculator or computer to estimate the integral).

(b) P(X > 6 feet) = P(X > 72 inches) = 1 — P(0 < X < 72) ~ 1 — 0.858 = 0.142, so 14.2% of the adult
male population is more than 6 feet tall.

(e} _ 2
1. P(X >10) = / ! exp(—w> dz. To avoid the improper integral we approximate it by the

10 4.2 vV 2 2-4.22
integral from 10 to 100. Thus, P(X > 10) ~ /100 L ex (— (2= 94)2) dzx ~ 0.443 (using a calculator
g . ' - 10 4.2V27 p 2.4.22 ’ g

or computer to estimate the integral), so about 44 percent of the households throw out at least 10 Ib of paper a week.
Note: We can’t evaluate 1 — P(0 < X < 10) for this problem since a significant amount of area lies to the left of

X =0.
480 2
— 500)
2 <X< - C
12. (a) P(0 < X < 480) /0 12‘/z_wexp( 7107

estimate the integral), so there is about a 4.78% chance that a particular box contains less than 480 g of cereal.

> dx ~ 0.0478 (using a calculator or computer to

(b) We need to find y so that P(0 < X < 500) = 0.05. Using our calculator or computer to find P(0 < X < 500)
for various values of 4, we find that if u =519.73, P = 0.05007; and if p = 519.74, P = 0.04998. So a good
target weight is at least 519.74 g.

pt2e g (x — p)? T — 1
3. P(u—20< X < pu+20 :/ exp( =L ) dz. Substituting t = Z=# ana s — L 4
(» <X<u ) - Xp< 50 . Substituting —— an e

gives us

2 2
1 —-t2/2 1 / —t2/2
e odt) = — dt =~ 0.9545
[ P Vo
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0 if <0
14. Let f(z) = e where ¢ = 1/p. By using parts, tables, or a CAS, we find that
ce if >0
(1): [ zeb® dz = (€*®/b*)(bz — 1)
Q): [ %€ dz = (e**/b°) (b*z® — 2bz + 2)
Now
2 (s ] oo
o = [ (@ - (@) de = [°(x — p)*f (@) dz+ [§7 (2 — w)*f(2) do

=0+ tli}rgocfot(:v —p)ie"dz =c- Jim fo (2™ — 2zpe” " + p’e™ ") dx

Next we use (2) and (1) with b = —c to get

—cz —z' —cxt
2 s € 2 2 2€
o —ctliglo[— = (c*z +20w+2)—2p (—cx —1) + p? .

Using 1'Hospital’s Rule several times, along with the fact that p = 1/c, we get

2 2 21 1 1 1 1 1
7 c[ < +c 02+c —c)} C(c3> 2 T 0Ttk

. 4
15. (a) First p(r) = E,ﬂe—%/ao > 0 for r > 0. Next,
0

[e o] oo t
/ p(r)dr = / —451"26727“/(10 dr = ég lim r2e 2/ gr
0

—oo ] ap t— Jo

By using parts, tables, or a CAS [or as in Exercise 14] , we find that
[ 22eb® dz = ("/b%)(b°x® — 2bx +2). ()

4 3
Next, we use () (with b = —2/ao) and I’Hospital’s Rule to get p [ﬁ% (—2)] = 1. This satisfies the second
3| -

condition for a function to be a probability density function.

4 r? 4 2r 2 .
(b) Using I'Hospital’s Rule, — Tlln;o Tl Jim eyl ~ @ Jim. )T

To find the maximum of p. we differentiate:
/ 4 2 _—2r/a 2 —2r/a 4 —2r/a T
p('r')=—a—g['r e ° % +e °(2r) :a—ge °(2r) —a—0+1

p(r)=0 & r=0orl= T & r=ao [ao =~ 5.59 x 107! m]. p(r) changes from positive to
ao

negative at 7 = ao, SO p(r) has its maximum value at 7 = do.

(c) It is fairly difficult to find a viewing rectangle, but knowing the 110
maximum value from part (b) helps.
p(ao) = ig, aZe 20/ = L2 ~ 9,684,008.979
ap ao
With a maximum of nearly 10 billion and a total area under the curve A 100
0

of 1, we know that the “hump” in the graph must be extremely

narrow.
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T4 2o-2/a = oo 4 ~2s/20 gg Using (x) from part (a)
(d) P(r) = —s'e %ds = P(4ag) = 357 s. Using p
o @ o @
(with b = —2/a0),
4ag
4 [e /0 g4 , 4 >] 4
=S| (5% + —s+2 ==
pon) =5 [ a7y (i + 2 %

=-1 (826‘8 -2)=1- 41e™® ~ 0.986

(“_i) [e7®(64+ 16 +2) — 1(2)]

©p= [ rp(r)dr= % lim [7r°e~27/%0 dr. Integrating by parts three times or using a CAS, we find that

bx

8 Review
CONCEPT CHECK

-

- (a) The length of a curve is defined to be the limit of the lengths of the inscribed polygons, as described near
Figure 3 in Section 8.1.

(b) See Equation 8.1.2.
(c) See Equation 8.1.4.

2 (a)S= f:27rf(m) 1+ [f'(z))* dz

b Ifz=g(y),c<y<dthen S = fcd 21y \/1+ [g'(y)]? dy.

© S = fab 2nz\/1+[f'(z)]?dz or S = fcd 2mg(y) \/1+ [¢'(v)] dy

w

Let c(x) be the cross-sectional length of the wall (measured parallel to the surface of the fluid) at depth z. Then the

hydrostatic force against the wall is given by F = f: bxc(x) dx, where a and b are the lower and upper limits for z
at points of the wall and § is the weight density of the fluid.

4. (a) The center of mass is the point at which the plate balances horizontally.
(b) See Equations 8.3.8.

o

If a plane region R that lies entirely on one side of a line £ in its plane is rotated about £, then the volume of the
resulting solid is the product of the area of R and the distance traveled by the centroid of 9.

o

See Figure 3 in Section 8.4, and the discussion which precedes it.

~N

(a) See the definition in the first paragraph of the subsection Cardiac Output in Section 8.4.

(b) See the discussion in the second paragraph of the subsection Cardiac Output in Section 8.4.

8. A probability density function f is a function on the domain of a continuous random variable X such that
f: f(z) dz measures the probability that X lies between @ and b. Such a function f has nonnegative values and
satisfies the relation |’ p f()dz =1, where D is the domain of the corresponding random variable X. If D = R.

or if we define f(z) = 0 for real numbers z & D. then [

f(z) dz = 1. (Of course, to work with f in this way,
we must assume that the integrals of f exist.)
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9. (2) f 100 f(z) d=x represents the probability that the weight of a randomly chosen female college student is less than
100 pounds.

by p=[% zf(x)dz = [ zf(z) dz

(c) The median of f is the number m such that [°° f(z) dz = 1

10. See the discussion near Equation 3 in Section 8.5.

EXERCISES

1. y=1(@’ +4)3? = dy/dz = 1(z? +4)Y2(2c) =
2

1
4
2
1+<§l—y> :1+[ x(z? +41/] =1+12@"+4) =o'+ 27 +1= (327 +1)".
XL
15

Thus, L = [0 (Fo? +1)7 do = [ (e + 1) do = [3a° +a]s = %

dy _o. 1

- S (12) -cos(3z) - 3= cot(iz) =

2 y=2In(singz) =

- <dy> = 1+ cot?(La) = csc?(4z). Thus,

dz
T ™ L /2 u:%m,
=// \/csc2(%x)d:c=/ |csc(%m)|dx:/ 'csc(%:v)d:t:———//6 cscu (2 du) [du:%dm}
/3 w/ ™
= 2[In |cscu — cotu]] = 2[In|csc § — cot z|- In|csc § —cot § =]
=2[1n|1—0|—1n|2—\/§|]:—2ln(2—\/§)z2.63
t 11 1 dy 1.3 _ -3
3-(a)y=%+5$—2——1—6m +2.”L‘2 = E;:Z -z =
- _3\2
1+ (dy/dz)? —1+( 3 -z )2=1-|-16 624z —1—16:1:6+%+z 6:(}1:53—}—:5 5%

Thus, L = f1( T +w_3)dz=[11—6$4—%$ 2]21)'—'(1_%)_(%"‘%):%'
2
®) S = [22ma(a® +o7%) de = 2n [} (fo* +27?) do = 2m[550° — 2],
=2nr((22 2)—(-—1)]"2”(‘—%_204’1)—27’(%_):_0
4 (y=a> = 1l+(@)=1+4" =
1 5 1 _ 2] _m 3/25:£ 53/2_1)
=5 onzy/1+ dx? dx = [ 5+/udu [u=1+4z°] R M
byy=2> = 1+(@)" =1+4 So
S—or [} VT a2 do = 2 [§ VI T u? jdu lu=20] =3 o u'VI+u? du
2
= %[%u(l +2u*)V/1+u? - 3ln lu +v1+u? HO [u = tan @ or use Formula 22]
= g[i(g)\/_— %1n(2+\/5> —0] = %[18\/5—1n<2+\/3)]
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5.2
5.y= e = dy/dx = e = 14 (dy/dz)? =1+ 4x?e™ 2.
Let f(z) = v/1 + 4z2e~22%, Then

L= /3 f(z)da ~ Se = (3‘—30)/9[10(0) +4F(0.5) + 2f (1) + 4F(L5) + 2£(2) + 4£(2.5) + £(3)]

~ 3.292287
6. S = f03 2ryds = f03 ome=" V1+4z2%e-22% dg. Let g(z) = 2me™" \/ 1 + 4x2e-22% Then
3 (3-0)/6
S = / g(z)dz ~ S = —3——[g(0) +49(0.5) +29(1) + 49(1.5) + 2g(2) + 4g(2.5) + 9(3)]
0
=~ 6.648327

7,y=/1z\/\/i—ldt = dy/dz=3/Vo-1 = 1+(dy/de)’=1+(Va—1) =z

Ths, L= [}° Vade = [[°a*/4do = ¢ [ 5/4] C=iE-n=12
° 1 10 47 o116 8 4088
8..5':/ 27ra:ds:27r/ z-z1/4dw:27r/ m5/4dw:27r~—[m9/4] 21(512—1): T
1 1 1 9 1 9 9
9. As in Example 1 of Section 8.3, 3 f Z = % = 2a =2 —zxand

w=2(15+a)=3+2a=3+2—2=5- 2z Thus,

F:fongw (5 —=2)dz = pg[3a —§$ ]z=pg(10—§)=2—325 [pg = 6] ~ 2 .62.5~ 458 b

0. F = [16(4—y)2(2/5) dy = 46 [* (4y1/2 - y3/2> dy sh

——
4
= 48377 - 2y = a5(% - )
4 ft
= 205(3 - §) = ]

~2133.31b  [6 ~ 62.5 Ib/ft%] *

y

1. A :f_12 [(4-2?) — (z+2)] dac:f_12 (2-z-2%)de = [2z — 122 - %xs]l_

~2-3-) - (a-249 -1 =
T=A"1 ij z(2 -z - z?%)dz = %f_12 (2z — 22 — z®)dz = 2[z? 1%~ ix‘l]l_Q
-2 - (g0 = 3
and  g=AT (4 02) (@+2)de =4 [, (2% ~ 902 — 42 + 12) dz

Il

§[§x5—3x3—2z2+12m]1_2:g[(§—3—2+12)-(—%+24—8—24)] =12

Thus, the centroid is (Z,9) = (_%, %)

107
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12. From the symmetry of ion,T = Z 3m/4 - 3m/4
ymmetry of the region, T = [.74 smmdm—[—cosx]w/ﬁ =4 - (~%) =2
— 3m/4 T
U=% W/4/ 1sin® avdac—Afs/Al/‘l‘l1 (1 - cos2z)dz

13.

14.

15.

16.

17.

18.

YWl [1‘ - %sin 23:] i’;f

Thus, the centroid is (7,) = (3, 725 (5 + 1)) ~ (1.57,0.45).

An equation of the line passing through (0, 0) and (3,2) isy = %w A = % -3-2 = 3. Therefore, using
Equations 8.3.8, T = 3fo z(2z)de =%

Thus, the centroid is (Z,7) = (2,3).

Suppose first that the large rectangle were complete, so that its mass would be 6 - 3 = 18. Its centroid would

be (1, %) _The mass removed from this object to create the one being studied is 3. The centroid of the cut-out piece

is (2, 2). Therefore, for the actual lamina, whose mass is15,7 = 18 (1) — &(3) = 5, and g = 3. since the

[

~—"

Jamina is symmetric about the line y = 3. Thus, the centroid is z7) = (3,2

The centroid of this circle, (1,0), travels a distance 27 (1) when the lamina is rotated about the y-axis. The area of

the circle is (1)2. So by the Theorem of Pappus, V' = A(2nT) = w(1)%2n(1) = 27°.

The semicircular region has an area of %Trr2, and sweeps out a sphere of radius 7 when rotated about the z-axis.
7 = 0 because of symmetry about the line z = 0. And by the Theorem of Pappus, V' = A(2ry) =

dnr® = Lar?(20y) = Y= 2L 7. Thus, the centroid is ,7) = (0,357)-
=100 = P =2000- 0.1(100) — 0.01(100)2 = 1890

Consumer surplus = fomo [p(z) — Pldx = foloo (2000 — 0.1z — 0.01z> — 1890) dx

— [110z — 0.052° — 225°] " = 11,000 — 500 - 10000 ; $7166.67

[2e(t)dt = S12 = 24-0971(0) +4(1.9) + 2(3.3) + 4(5.1) + 2(7.6) +4(7.1) + 2(5.8)
4+ 4(47) +2(3.3) +4(2.1) +2(1.1) + 4(0.5) + 1(0)]
= 2(127.8) = 85.2mg - s/L

Therefore, F' ~ A/85.2 = 6/85.2 = 0.0704 L/s or 4.225 L/min.



if 0<z2<10
if t<0Oorxz>10

(a) f(z) > 0 for all real numbers = and

S5 f(z) da = fo 75 sin( & z) do

= 1(—cosm +cos0) =

Therefore, f is a probability density function.
(b) P(X < 4)
~ 2(—0.309017 + 1) ~ 0.3455

©p=[% zf(z) da:—fo gsesin(fz) dr
:fow%

2y usinudu 2 2 - [sinu —ucosulj =

This answer is expected because the graph of f is symmetric about

the line £ = 5.

= ffoo f(I) dr = f04 % sin(f’az) dx =

Ru(sinu) () du [u= 15, du = 75 dx]

20— (-

— (z — 268)?
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. 10
20 ° L:[_COS(%I)]O
;1+1) =1

%[*cos(l—’;)m)]g = %(—cos%’r + cos 0)

1]=5

250 15\/ 27
last between 250 and 280 days is about 67.3%.

280
20. P(250 < X < 280) = / exp<

0
21. (a) The probability density function is flt) = {

PO<SX<3)=[Plet/8gy

(b) P(X > 10) =

—00

(¢) We need to find m such that P(X > m) = 3

lim (—e_’/s +e"m/8> =3 => e ™81
T—00 2
m = —8In 3 = 8In2 ~ 5.55 minutes.

2-152

1_-t/8
g€

3
[ e_t/s} = —e
0

[ te B dt = lim [—e—t/sr =
10

) dx = 0.673. Thus, the percentage of pregnancies that

ift<0
ift>0

~3/8 4+ 1~0.3127

—em/8 6—10/8) =0+4e % ~0.2865

1 ,-t/8 3, 1 . —t/8]° 1
= fm € dt—2 = IILH;O[—e /}mzi =

= -m/8=hi =



[1 PROBLEMS PLUS

1224+ <4y & 22+ (y — 2)2 < 4,50 S is part of a circle, as shown

in the diagram. The area of S is

Jo VA =y dy [lgﬁm + 200571 (2
\/—+2cos_1(1) —2cos”

1)
!
= 42(3) 20 =% - f

} [a =2

Another method (without calculus): Note that @ = ZCAB = Z. so the area is
(area of sector OAB) — (area of AABC) = 1(2 Nz l)Va=2 -8

2y=+yz3 2% = The loop of the curve is symmetric about y = 0, and therefore y = 0. Ateach point
where 0 < z < 1, the lamina has a vertical length of v/z3 — z2 — (—va3 —z%) = 2/2® — z*. Therefore,
—_folx'de$_folwdeW luate the integral ly:
T = fol We o= irale fol N e evaluate the integrals separately:

fol vz —zdder = fol /1= zdz

=J /2 25in® 6 cosf+/1 —sin% 9 de sinf = 'z, cos§df = dx/( 2Vz),
2sinfcosfdf = dx
- J‘O”/? 2sin® f cos? 0 df) = fon/2 2[5 (1 - cos 20)]3 1(1 + cos20)do

o2 1(1— 20826 + 2 cos® 20 — cos® 20) do

"/2 é[l —2c0s20 + 2 cos 20(1 — sin® 20) — 11+ cos49)2] dé
= %[0 — %s1 20]"/2 32 OW/Z ( + 2cos 40 + cos? 49) dé
=1 —50+1 s1n49]"/2 = 0"/2 (14 cos8)do

_ 3n 1 . /2 -
—-ﬁ—a[ﬁ—f—gsm%]o :1578

f vz —x“d:c—f 232 /1 = dx—f"/22sin40c030\/1—sin20d9 [sinf = /z]

—fo/ 2sin* @ cos? 9 dh = ”/2 -1(1—cos20)2A%(1+cos29)d9

/2 1

=Jo 1 — cos 260 — cos? 26 + cos® 20) do

0"/2 11— cos260 — 2(1 + cos46) + cos 26(1 — sin 26)] dé

= Z[g — %sin4g - 1 5 sin QH]W/Q %

_ 5 — _
Therefore, 7 = = g and (z, 7) = (57 0)'

m



712 O CHAPTER8 PROBLEMSPLUS

3. (a) The two spherical zones, whose surface areas we will call S1 y

and Sa, are generated by rotation about the y-axis of circular

arcs, as indicated in the figure. The arcs are the upper and

lower portions of the circle z2 + y® = r? that are obtained

when the circle is cut with the line y = d. The portion of the

upper arc in the first quadrant is sufficient to generate the

upper spherical zone. That portion of the arc can be described

by the relation z = /72 — y2 ford <y < r. Thus, dz/dy = —y//r2 — y? and

ds= 1)1+ (& 2d S I T WY B L
ay) Y | R N~
From Formula 8.2.8 we have

/ d:r rdy T
S / 2mx 1+ dy—/ 2m /12 — Y —=— / 2rrdy = 27r(r — d

Similarly, we can compute Sz = f 27z /1 + (dz/dy)? dy = f 2rr dy = 2nr(r + d). Note that

S; + So = 4mr?, the surface area of the entire sphere.

(b) r=3960miandd =7 (sin75°) = 3825 mi,
so the surface area of the Arctic Ocean is about

y
/ d
75°
\ r x
(c) The area on the sphere lies between planes y = y1 and y = y2, where y2 — y1 = h. Thus, we compute the

surface area on the sphere to be S = 271'z 4/1 + dy = / onrdy = 2nr(y2 — y1) = 27rh.
v1

This equals the lateral area of a cylinder of radius r and

277 (r — d) ~ 2m(3960)(135) ~ 3.36 x 10° mi?.

height h, since such a cylinder is obtained by rotating the line

z = r about the y-axis, so the surface area of the cylinder 1 /

between the planes y = y1 and y = y2 is A

x=r
‘ X
A—/y22 1+ —d£>2d */y227rr\/1+02dy L / y=n
= 5 T ay Yy = o \/

=2mrylyl,, = 2mr(y2 — y1) = 27rh
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(d) h = 2rsin 23.45° =~ 3152 mi, so the surface area of the
Torrid Zone is 27rh & 27(3960)(3152) = 7.84 x 107 mi.

4. (a) Since the right triangles OAT and OT B are similar, we have

2

= g = a= - _: I The surface area visible from B is

r+ H
'

S = [, 2rz\/1+ (dz/dy)® dy. From 2 + y* = 12, we get

d, 5 2 d , 5 dzx
dy(w +y) dy(r) = gt

dx
d—y——;andl-i-(d

2 2 2
d"”) =XV T Ths,
iy z

ni

r r T,2 2 r 2 H 27T7°H
S—/a 27rw-5dy—27rr(r—a)—27rr<r~T+H> =27r <1_7‘+H> =2mr gy ey T

(b) Assume R > r. Ifa light is placed at point L. at a distance z from
the center of the sphere of radius . then from part (a) we find that
the total illuminated area A on the two spheres is [withr + H =z
P 1-—x—4

andr+ H =d — z].

Alz) = 2nr?(z —r) n 2rR*(d -z — R) [r<z<d-R]. A(m) <1——)+R2< dR

T d—zx - 2w -z
R 8 R3 (d-2)* R®
Alz)=0 & 0=r2.L1 2 — =
(m) T l‘z + (d_ m)? 2 (d_ x)z z? 7-3

x
d 2 RS d 3/2 3/2
F= 0 = £ () o fon () i
z r z r T r 1+(R/7')3/2

r3 R® 273 2R?
Now A'(z) = 27| — — ——— o) =2m| ——=% - —— (z*
ow A'(z) ﬂ-(:ﬁ (d«z)z) = A'(z) 27r< — (d~x)3> and A" (z*) < 0, so we

have a local maximum at z = g~
However, * may not be an allowable value of Z—we must show that z* is between r and d — R,

d
> _
MHzr>r o 1 (/7‘)3/227. & d>r+R\/R/r
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* d R 3/2 R 3/2
N z<d-R & —————= <d- - = —
@ " < T (rjrypr SR e dsd R+d(r> R(?) @
R\ 32 R\3/2 R
R = <d|= Tt —
+R<r> 'd<r> & dZ(R/r)3/2+R*R+r r/R, but

R+7y/r/R < R+, andsince d > 7 + R [given], we conclude that z*<d-R.
Thus, from (1) and (2), * is not an allowable value of z if d <7+ R VR/r.

So A may have a maximum atz = r,z",ord — R.

2rR*(d—r — R) 21r2(d — 7 — R)
Alr) = ——————= — = o
(r) - and A(d — R) TR
2 7_2
A(r)>A(d—-R) & iR © R¥d—R)>r*(d—r) & RMd-R’>r’d-r’ &

Rd-r*d>R -1 & d(R—r)(R+r)>(R—r)(R2+Rr+r2) &
d>(R*+Rr+r3)/(R+7) & d>[(R+71)>—Rr]/(R+r) & d>R+r— Rr/(R+T). Now
R+r— Rr/(R+r) < R+r, and we know thatd > R + 1, s0 we conclude that A(r) > A(d — R).

In conclusion, A has an absolute maximum at = x* provided d > r + R/ R/r; otherwise, A has its

maximum at x = 7.

5. (a) Choose a vertical z-axis pointing downward with its origin at the surface. In order to calculate the pressure at

depth z, consider n subintervals of the interval [0, 2] by points z; and choose a point z} € [zi—1,x:] foreach .
The thin layer of water lying between depth i1 and depth z; has a density of approximately p(z7 ), so the
weight of a piece of that layer with unit cross-sectional area is p(z])g Az. The total weight of a column of

water extending from the surface to depth 2 (with unit cross-sectional area) would be approximately

p(z;)g Ax. The estimate becomes exact if we take the limit as n — oo; weight (or force) per unit area at

s

i=1

Il

depth zis W = lim Y p(z])g Az. In other words, P(z) = [, p(z)gdz. More generally, if we make no
n—oo ;1

assumptions about the location of the origin, then P(2z) = Po + J. OZ p(z)g dz, where Py is the pressure at £ = 0.

Differentiating, we get dP/dz = p(2)g.
F=[" P(L+z) 2Vr?—a?dx
= [ (PO + fOL+I poe’’ Mg dz) -24/r2 —z2dx
=P, firg Vr? — 22 dx + pogH fzr(e(Lﬂr)/H _ 1) .22 — z2dx

= (Po — pogH) [, 27 — a2 dx + pogH I, e LH2)/ H 9 \/r2 — g2 dx
=(P — pogH) (mr?) + pogHeL/H I e*/H . 2\/r2 —z2dx

0
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6. The problem can be reduced to finding the line which minimizes the Y
11
shaded area in the diagram. The equation of the circle in the first quadrant i

isy = V1 — x2, so if the equation of the line is y = h, then the circle and

the line intersect where h = v/1 — 22 = 2z = /1 — h2. So the shaded

area is

A= / Vi—z - )dw+/\;m(h—\/1—*x2)d:c

kg

— \V1-h2 \/1-h2
[—hx]o 1_h2+[h:c]l\/:h—2+/ \/1—x2dm+/ 1—z2dz
0 1

I

—hvV1—-h24+h— h\/l—h2+/ \/l—xzdz—f—/ \/1—:1:2d:c

h(1—-2V1-h2) + / Mdm+/ \/1_——?d:c

Note that at (), we reversed the limits of integration and changed the sign in the last integral. We are interested in

the minimum of

A(h) = h(1-2V1—h?) + A W T 2Zde + Y =M VT =22 dz, so we find dA/dh using FTC1 and
the Chain Rule:

%:h(—zﬁ) +(1—2M)+2[ 1—(@)1 d%(ﬂ)

=——|op 1-h2-2(1-h 2h ——
_1_h2[ + ( )}+h —

1 [ 2
= == VIR 21— )]
= (1-7%)
Thisis 0 when /1 —h% —2(1 - 1% =0 <« u—2u® =0 (whereu = vI—h2) <« u=0o0r; &
h=1or £ - By the First Derivative Test. h = 33 represents a minimum for A(h), since A'(h) = 1 — 2

V1 —h?

goes from negative to positive at h = 32@ .

Another method: Use FTC2 to evaluate all of the integrals before differentiating.

Note: Another strategy is to use the angle 6 as the variable (see diagram above) and show that

A=0+cosh—z _1 sm 26, which is minimized when § — 5
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7. To find the height of the pyramid, we use similar triangles. The first figure shows a cross-section of the pyramid
passing through the top and through two opposite corners of the square base. Now |BD| = b, since it is a radius of
the sphere, which has diameter 2b since it is tangent to the opposite sides of the square base. Also, |AD| = b since

AADB is isosceles. So the height is | AB| = v/b2 + b2 = v/2b.

B C L . B b C

We first observe that the shared volume is equal to half the volume of the sphere, minus the sum of the four equal
volumes (caps of the sphere) cut off by the triangular faces of the pyramid. See Exercise 6.2.49 for a derivation of
the formula for the volume of a cap of a sphere. To use the formula, we need to find the perpendicular distance h of
each triangular face from the surface of the sphere. We first find the distance d from the center of the sphere to one
of the triangular faces. The third figure shows a cross-section of the pyramid through the top and through the
midpoints of opposite sides of the square base. From similar triangles we find that

d _|AB| _ V2b

- = d=

b |AC| B b2 + (\/ﬁb)2 \/W

V2h V6
?b

Soh=b—-d=0b— 33@b = 3—’3—3@& So, using the formula V = wh?(r — h/3) from Exercise 6.2.49 withr = b,

we find that the volume of each of the caps is

7r<3 ‘3‘/5 b>2 (b -3 ;,‘3/6 b) =13 ‘96‘/6 . 6—‘§@7rb3 =(2-% V/6)mb®. So, using our first observation, the

shared volume is V = %(%ﬂbe‘) —4(2 - = 6)7rb3 = (%%\/6 — 2)7rb3.

8. Orient the positive z-axis as in the figure.
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Suppose that the plate has height h and is symmetric about the z-axis. At depth z below the water (2 < z < 2 + h),
let the width of the plate be 2f(z). Now each of the n horizontal strips has height h/n and the ith strip (1 < 5 < n)

1—1

goes fromz = 2 + ( )h tox =2+ <i> h. The hydrostatic force on the ith strip is
n

F(i) = f;:[((i/_"l))';n]h 62.5z(2f (z)]dz. If we now let 2[2f(x)] = k (a constant) so that f(z) = k/(2z), then

N r2+(i/n)h _ 2+(i/n)h
Fi) =[50 s 62:5k da = 625k [z 1/

=62.5k([(2+ 1h) — (24 52h)] = 62.5k(2)

So the hydrostatic force on the ith strip is independent of 4, that is, the force on each strip is the same. So the plate
can be shaped as shown in the figure. (In fact, the required condition is satisfied whenever the plate has width C/z

at depth z, for some constant C. Many shapes are possible.)

9. We can assume that the cut is made along a vertical line x = b > 0, y
that the disk’s boundary is the circle z2 + y? = 1, and that the center
of mass of the smaller piece (to the rightof z = b) is (% , O). We

wish to find b to two decimal places. We have

1 _ fb1m~2\/1—x2dz Evaluating th )
S =F = . Evaluating the numerator gives us
2 fb12\/1—w2dx & &

= J (=) (2a) do = -2 [(1 - mz)s/z]: =-2[o-(1- b2)**] = 2(1 ~ b%)*'2. Using

Formula 30 in the table of integrals, we find that the denominator is
[zv1—22 + sin‘lx]; =0+%)-(bvi-b2+ sin~'b). Thus, we have

1 21— p2)3/2 . .
5 =T=— bi/T——b? mpene L equivalently, £(1 —52)%/2 = = _ 36v1 =52 — Lsin~'b. Solving this
2

equation numerically with a calculator or CAS. we obtain b ~ 0.138173, or b = 0.14 m to two decimal places.

10. A4, =30 = 1bh=30 = bh=60.

1

B 1 0 b 10
T=6 = " A zf(z)de =6 = / x<g:r+10~h>dz+/ z(10) dz = 6(70) =
0 b

bhzlo A 17,2710 h 2h2b 2
{3e +10z —hz ) dz +10- [2?],” =420 = 7T +ow -ng0+5(100—b):420 =



718 O CHAPTER8 PROBLEMS PLUS

1hb? 4+ 56 — Lhb? 4 500 — 5b% =420 = 80 = ghb® = 480 = (hb)b = 480=60b0 = b=8.

A, =170

So h = 8 = 13 and an equation of the line is y = 58/—2134- (10— }2§> = 1—2:174— g Now

Y= Ai2/010 %[f(ac)]zd:vz 7—01-—2 {/08 <%z+ g>2 dac+/810(10)2dm}

8
= i [J3 (Ba® + Ba+ %) da +100(10 - )] = o ([22=° + B’ + 3ol +200)

— (150 + 150 + 50 + 200) = 355 = 3

Another solution:

Assume that the right triangle cut from the square has legs a cm and y

b cm long as shown. The triangle has area 30 cm?, s 1ab=30and b

ab = 60. We place the square in the first quadrant of the zy-plane as a{ /

shown. and we let T, R, and S denote the triangle, the remaining

portion of the square, and the full square, respectively. By symmetry,

10 cm x

the centroid of S is (5, 5). By Exercise 8.3.37, the centroid of T'
. (b a

2,10- = ).
is <3, 0 3>

We are given that the centroid of R is (6, c), where c is to be determined. We take the density of the square to
be 1, so that areas can be used as masses. Then T has mass mr = 30, S has mass ms = 100, and R has mass
mg = ms — mr = 70. As in Exercises 38 and 39 of Section 8.3, we view S as consisting of a mass mr at the

mrZT + MRIR
mr + MR

centroid (Zr, Jr) of T and a mass R at the centroid (Zr,Yg) of R. ThenTs = and

go = MITL MR s 5 30(b/3) +70(6) . _ 30010 —a/3) +70c

mr + MR 100 100




CHAPTER8 PROBLEMSPLUS O

Solving the first equation for b, we get b = 8 cm. Since

ab = 60 cm?, it follows that @ = € — 7.5 cm. Now the second

7.5cm
equation says that 70c = 200 + 10a, so Tc = 20+ a = % and l

c = 5% = 3.9285714 cm. The solution is depicted in the figure.

M. If h = L, then

_ areaundery = Lsin® [ Lsinfdf _[meosly  —(-1)+1 2

area of rectangle wL T ™
If h = L/2, then

areaundery = ;Lsin® [ 1Lsin6df _[—costl; 2
area of rectangle N wL - 27 27

12. (a) The total set of possibilities can be identified with the rectangular y
region R = {(0,y) |0 <y < L,0< 6 < 7}. Even when h > L,
the needle intersects at least one line if and only if y < hsinf. Let
R ={(0,y) |0<y < hsing,0<6 < m}. When h < L, R, is
contained in R, but that is no longer true when h > L. Thus, the
probability that the needle intersects a line becomes

area(RNR1)  area(RNR,)
P = =
area(R) mL

When h > L, the curve y = hsin6 intersects the liney = L
twice—at (sin"!(L/h), L) and at (w — sin"'(L/h) L). Set
91 = SiIl_1 (L/h) and 02 =T — 01. Then

area(RNR1) = [ hsinfdo + [, Ldo + [7 hsingdo

=2 [ hsin@do + L(6> — 6,) = 2 [— cos8]0" + L(m — 26,)
=2h(1 — cos ;) + L(m — 26,)

n9

:2h(1 - “}ﬁh_m> +L [n - ZSin—1<%>J

=2 —2h2 — L2 + 1L — 2Lsin‘1<%>

We are told that L = 4 and h = 7, so area(RNR1) = 14 — 2/33 + 477 — 8sin™!(

JRE =17

%) ~10.21128 and
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P = L area(R N Ry) ~ 0.812588. (By comparison. P = 2 ~0.636620 when h = L, as shown in the

™

solution to Problem 11.)

(b) The needle intersects at least two lines when y + L < hsin®; Y
that is, when y < hsin @ — L. Set 4
R = {(0,y) | 0 <y < hsinf — L,0 < @ < 7}. Then the 31
probability that the needle intersects at least two lines is 21
14
area(R N R, RN R
, = areal 2) _ areal 2) When L = dand h = 7. %2
area(R) nL 0 ]
is contained in R (see the figure). Thus,
Py = L area(Ro) = 25 [T /P (Tsin — 4)d6 = -2 [1/21 4 ) (Tsin€ — 4) d0
/2 -
= 5= [~Tcos 6 — 46 1{1_1(4/7) =4+ [0 — 27+ 7@ + 4sin 1(4/7)]

.1 _
_ V34 4sm27r (4/7) =27 _ .301497

(c) The needle intersects at least three lines when y + 2L < hsin: that is, wheny < hsin§ — 2L. Set
Rz ={(6,y) |0 <y < hsind —2L,0<0< 7}. Then the probability that the needle intersects at least three

lines is P3 = iria—(%—n%—g) = M. (At this point, the generalization to Pp, n any positive integer,

area(?R) wL

should be clear.) Under the given assumption,

T —sin L/h
P = ﬁ area(R3) = 7r1L s‘n~1(2L/i)/ )(hsm9 2L)df

—2 ("2 (hsin6 — 2L) df

wL Jsin—1(2L/h)

_ 2 /2
=== hcosf — 2L6’]sm_1 (2L/h)

=2 [-—TFL +Vh? —4aL? +2L sin_1(2L/h)]

Note that the probability that a needle touches exactly one line is P1 — P2, the probability that it touches exactly two

lines is P» — Ps, and so on.





